

MONAN

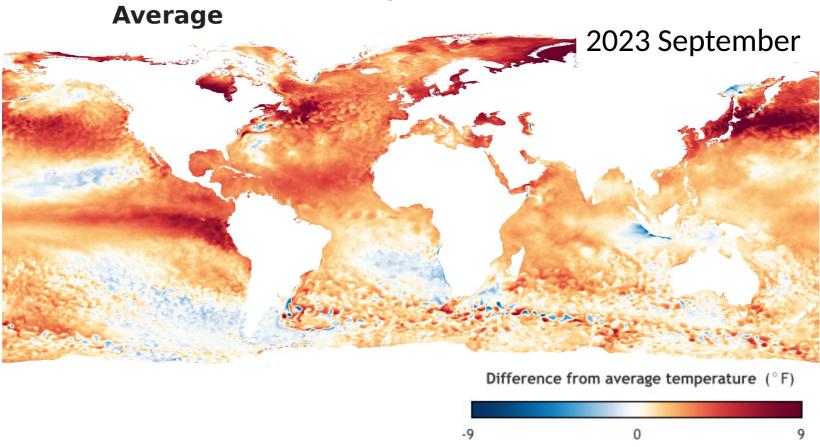
Model for Ocean-laNd-Atmosphere predictioN

A new paradigm for advancing the weather, climate, and environmental prediction in Brazil

Saulo R. Freitas saulo.freitas@inpe.br

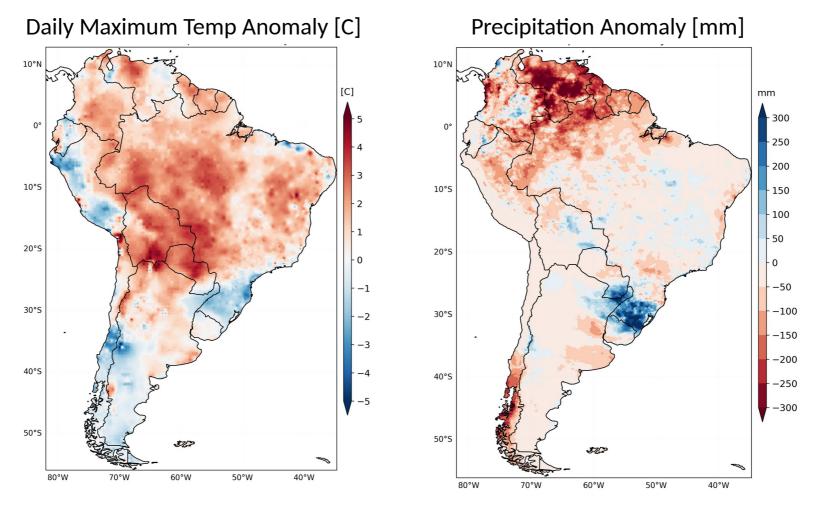
Outline

- Climate change and the associated adverse phenomena in South America
- Brief overview of Brazilian modeling efforts
- The MONAN proposal and ways to go forward.



El Niño in 1997 and 2023

SST - Global, Monthly Difference from Average



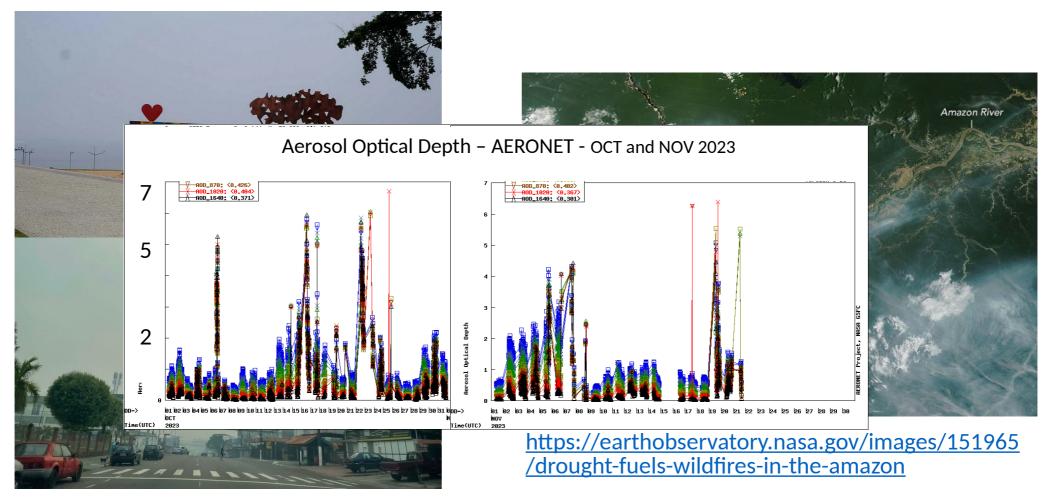
The synergy between El Niño in 2023 and the global warming

The synergy between El Niño in 2023 and the global warming

Drought on the Rio Negro

Drought Fuels Wildfires in the

https://earthobservatory.nasa.gov/



Biomass Burning Smoke invades Manaus City in Amazonia

Onda de fumaça que encontra Manaus se torna mais densa. — Foto: Matheus

The Inequity of the Extreme Events

Divergent situations at the extremes,

but, mostly converging to penalize the poorest populations!

Modeling Activities in Brazil

Modeling Activities in Brazil (*)

Models	Type - Time scales	Institution
MCGA - BAM	Global Atmospheric model medium range - subseasonal - seasonal	INPE/CPTEC
BRAMS	Regional Atmos + Chem + Aer + CarbCycle medium range	INPE/CPTEC, Universities, Regional NWP centers
Eta	Regional Atmospheric medium range – seasonal	INPE/CPTEC and Universities
WRF	Regional Atmospheric medium range	INPE/CPTEC, Universities, Regional NWP centers
COSMO	Regional Atmospheric medium range	INMET (Brazilian National Inst of Meteorology)
ROMS+WRF	Regional O-A Coupled Only for research	INPE/DIOTG
BAM+MOM5 (BESM)	Global O-A Coupled seasonal exhaustive	INPE/CPTEC

CPTEC/INPE - Global Circulation Model (32-yr development)

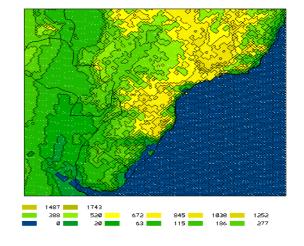
1988	1992	1994	1995	1996	1998
Origem (COLA)	Origem (COLA)	MCGA CPTEC/COLA	MCGA CPTEC/COLA	MCGA CPTEC/COLA	MCGA CPTEC/COLA
COLA (Center for Ocean-Land-Atmosphere Studies). Versão 1.7 Romboidal (R40L18 - Baseado no MRF 1988 do NCEP, então NMC). Sem paralelismo	COLA (Center for Ocean-Land-Atmosphere Studies). Versão 1.12 Romboidal (R40L18 - Baseado no MRF 1988 do NCEP, então NMC). Sem paralelismo • Sem paralelismo Convecção Profunda RAS (Moorthi e Suarez, 1992).	Versão CPTEC: Versão 1.0 Triangular (COLA Versão 1.12 + Modificações no CPTEC/INPE). Versátil para resoluções Horizontais e Verticais. • Sem paralelismo Dinâmica: 1994, NEC/SX-3: T _Q 0062L028 (210 km), CPTEC-COLA, Euleriano, Difusão explicita, Δt = 1200 seg, sequencial	Versão CPTEC: Versão 1.0 Triangular Dinâmica: 1994, NEC/SX-3: T _Q 0062L028 (210 km), CPTEC- COLA, Euleriano, Difusão explicita, Δt = 1200 seg, sequencial Melhoramento da Difusão para controle de CFL: Local (COLA/CPTEC,1995). Sem paralelismo	Versão CPTEC: Versão 1.0 Triangular Dinâmica: 1994, NEC/SX-3: T _Q 0062L028 (210 km), CPTEC- COLA, Euleriano, Difusão explicita, At = 1200 seg, sequencial Melhoramento da Difusão para controle de CFL: Espectral Aumentada (ECMWF,1996) Sem paralelismo	Versão CPTEC: Versão 2.0 Triangular Dinâmica: 1998, NEC/SX-4: T _Q 0062L028 (210 km), CPTEC-COLA, Euleriano, Δt = 1200 seg, paralelismo openMP, paralelo até 8 processadores, primitivas NEC Com paralelismo OpenMP (primitivas NEC)

CPTEC/INPE - Global Circulation Model (32-yr development)

1999	2000	2002	2005	2007	2008
MCGA CPTEC/COLA	MCGA CPTEC/COLA	MCGA CPTEC/COLA	MCGA CPTEC	MCGA CPTEC	MCGA CPTEC
Versão CPTEC: Versão 2.0 Triangular Dinâmica: 1999, NEC/SX-4: T _Q 0062L028 (210 km), CPTEC-COLA, Euleriano, At = 1200 seg, paralelismo openMP, paralelo até 8 processadores, primitivas NEC Física: Convecção Rasa: implementação do esquema de convecção rasa de Souza, 1999, ajustada para o AGCM.	T_Q 0126L028 (105 km), CPTEC-COLA, Euleriano , $\Delta t =$	Versão CPTEC: Versão 2.0 Triangular Dinâmica: T _Q 0126L028 (105 km), CPTEC-COLA, Δt = 600 seg, paralelo até 8 processadores, primitivas NEC implementação: Difusão Horizontal 2nharmônica: Implícita (CPTEC, 2002).	Versão: MCGA/CPTEC Dinâmica: 2005, NEC/SX6: T _Q 0213L042 (63 km), CPTEC/INPE-OMP, $\Delta t = 400$ seg, paralelo até 8 processadores, portável Códigos: Modelo, Pré e Pós: FORTRAN 90/95 com Módulos. Resoluções Definidas Dinamicamente. Modelo: OpenMP Pós: MPI em andamento Portabilidade: Rodam no SX6, Tupay e Una.	Versão: MCGA/CPTEC Dinâmica: 2007, NEC/SX6: T _Q 0299L064 (45 km), CPTEC/INPE-MPI,	Versão: MCGA/CPTEC Dinâmica: 2000, NEC/SX6: T _Q 0062L028 (200 km), CPTEC- COLA, Δt = 1200 seg Fisica: Implementação do esquema de convecção profunda: GRELL (Grell e Devenyi, 2002), ajustada para o MCGA/CPTEC.

CPTEC/INPE - Global Circulation Model (32-yr development)

2009	2010	2012	2016	2019	2021
MCGA CPTEC	MCGA CPTEC	MCGA CPTEC	BAM	BAM	BAM
MCGA/CPTEC Nova versão do global MPI-OMP massivamente paralela Grade: Novas formas de decomposição de domínio na malha computacional, decomposições na vertical no espaço Espectral e de Fourier, e decomposições espectral para parte semi-implicita e NNMI,	MCGA/CPTEC Dinâmica. Modificação da difusão de umidade especifica no espaço espectral Física: Acoplamento atmosfera-continente: codificação de uma interface de acoplamento entre a atmosfera e continente para o acoplamento de diferentes modelos de superfície continental.	Dinâmica: Advecção de humidade usando o esquema semilagrangiano Física: a) Implementação dos esquemas de superfície IBIS e SIB2.5	Versão (1.0) BAM Dinâmica: 2016, CRAY/TUPAN: Τ _Q 0666L064 (20 km), CPTEC/INPE-MPI_OMP, Semi-Lagrangiano, Δt = 180 seg, paralelo até n cores, portável Códigos: Modelo, Pré e Pós:revisados Dinâmica: Semi-lagrangiano totalmente	Versão do BAM -Versões consolidadas: •BAM_V0.0.0: Cavalcanti et al. (2019); •BAM_V1.0.0: Figueroa et al. (2016); •BAM_V1.1.0: código operacional em 2017; •BAM_V1.2.0: código usado em Guimarães et al. (2019), AMIP (Coelho et al 2020), teses e	-Versões BAM: BAM_V1.2.0_MC-KPP: (2019-2020); BAM_V1.3.0: (2019); BAM_V1.3.1: revisão, desenvolvimento(2019); -Versões BAM: em coordenada Híbrida BAM_V2.0.0: versão em coordenada híbrida (2019),
com granularidade mais fina. Radiação: Inclusão da radiação do UKMetOffice (Henrique Barbosa)	Implementação do esquemas de camada limite de Holtslag And Boville (1993)	b) Implementação dos esquemas de microfísica de nuvens Ferrier, B., 1994 e Morrison, H., J. Curry, and V. Khvorostyanov (2005).	testado e validado para a resolução de 20km. Física: Implementação do estado da arte da parametrizações físicas.	dissertações, operacional em 2018; -Versão operacional: •BAM_V1.2.0: código operacional (2018-2020);	BAM_V2.1.0: versão em coordenada híbrida operacional

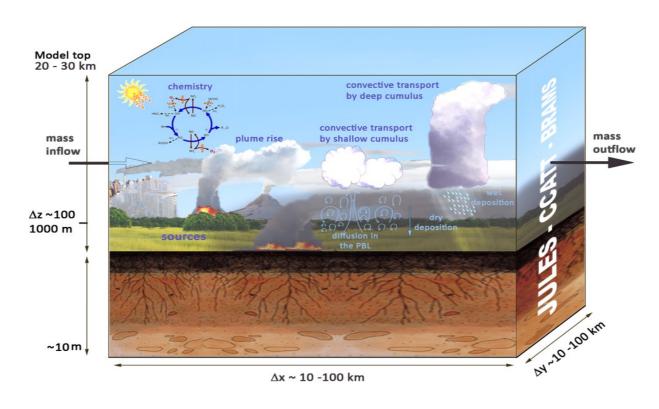

1996: Bucket, SEQ, 40km, 60-h forecast, South America domain 1998: OSU, new DSP, 72h 2002: Seasonal Forecasts, 5 members 2005: a. NOAH, MPI, 11-day forecast b. Ensemble forecast, 5 member, 40-km c. NEB setup, 10-km **2006: Non hydro**, 5 km, SE, 72h **2009: Climate change version**, 40 km, 4 members 2011: Finite Volume(FV), 15 km, sloping topography (cut-cells) c. Paleoclimate version

Eta @INPE 27-yr development

2012: Ensemble forecast, 8 members, 40 km, FV, cut-cell, 11-day fcst 2013: a. Ensemble Forecast, 5 members, 5 km, FV, Non-hydro b. Seasonal Forecast, 5 members, FV, cut-cells 2014: a. Climate change version(Eta CC), 20 km, 8 members, FV, cut-cell b. Climate change version, 5 km, 2 members, FV, Non-hydro, Urban vegetation c. Subseasonal, Eta-BESM, 10 members, 40 km, 60-day forecast.

d. Non-hydro, 1 km, 72h, SP-RJ **2015:** a. Eta CC, Eta/**NOAH-MP version**, 1-km resolution, 6-year run b.Eta CC, Eta/Dynamic Vegetation (Inland scheme) c. Weather version, Eta/RRTMG, replacing GFDL scheme 2017: a. Eta CC, Eta/coffee crop model b. **Eta modules** version c. Global Eta version - GEF seasonal version, 25 km 2018: Global Eta version - GEF weather version. 8 km 2020: a. Eta + parameterizations Lightning + Nox chemistry b. GEF, top 1hPa, restart capability 2021: a. Eta CC, RRTMG-convection coupled b. Eta deeper soil, + Brazilian biomes

c. Eta restart function



biomes2022: Eta unified - all scales 2023: albedo revised, turbulence scheme under revision

2024: Eta/MOM6 coupled, Eta/Flake coupled, ...

CPTEC/INPE developments on integrated atmospheric modeling tuned for tropical region

Brazilian developments on the Regional Atmospheric Modeling System

Dynamics, Physics and Chemistry formulations of the DDAMC 6 0

1. Dynamics

- 1. Time integration with Runge-Kutta (RK3, Wicker and Skamarock, 2002; Baldauf, 2008, 2010)
- 2. The polynomial flux specification (Wicker and Skamarock, 2002,) with 3rd and 5th order of spatial approximations. Additionally, the Flux Correct Transport (FCT, Skamarock, 2006).
- 3. Monotonic advection scheme for scalars (Freitas et al., 2011)

2. Physical Parameterizations

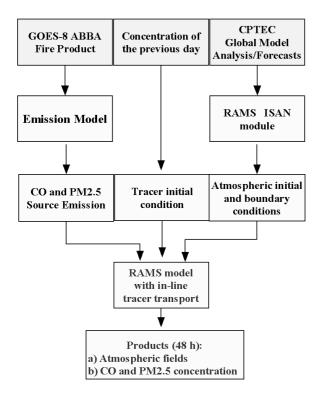
- 1. Radiation: RRTMG 5.0 schemes for long- and short-wave, including aerosols effects and coupled with microphysics and convection schemes.
- 2. Microphysics:
 - Thompson double-moment in cloud liquid water and aerosol aware (Thompson and Eidhammer, 2014).
 - GFDL single-moment six microphysics species: water vapor, cloud water, cloud ice, rain, snow, and hail/graupel.
- 3. Convection scheme: Grell and Freitas (2020) scale and aerosol aware, trimodal formulation, revised numerics, convective transport and wet removal of tracers
- 4. PBL Turbulence: M&Y 2.5, Nakanishi & Nino(200X)
- 5. Surface Scheme: JULES 6.0 with carbon cycle, biogenic VOCs, aerosol effects

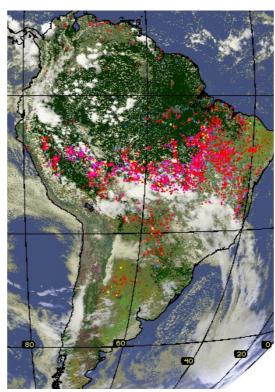
3. Chemistry and Aerosol processes

- 1. SPACK preprocessor for any chemical mechanism
- 2. Simple monodisperse aerosol model for the main sources
- 3. Comprehensive emissions preprocessor
- 4. Biomass burning emission model with smoke plume rise mechanism

4. Initialization

- 1. Incremental Analysis Update (IAU) from the GEOS-5 GCM.
- 2. 4DDA for GCM boundary condition (GFS, ERA-5)
- 3. Soil moisture and temperature from JULES off-line, GFS, GEOS-5 and ERA-5

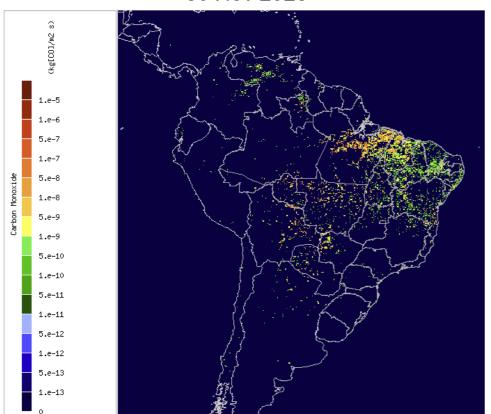


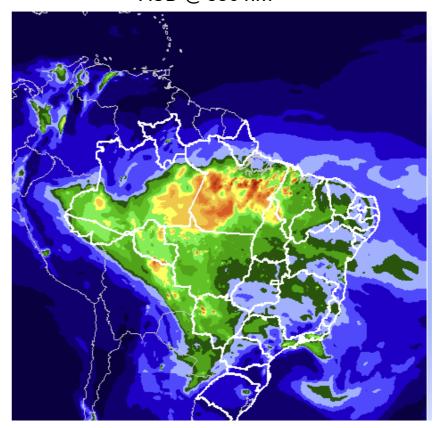

GOVERNO FEDERAL

Real time monitoring of the transport of biomass burning emissions in South America.

- Operational implementation in 2001 at the Lab. Master IAG/USP
- Applied for flight planning of the LBA SMOCC/RACCI 2002 Field Campaign.

General flow of the real time monitoring the transport of biomass burning emissions in South America. Vegetation map: 1 km IGBP 2.0. RAMS grid 40 Km.


The GOES-8 ABBA Fire Product on 1745Z September 7, 2002, depicting the vegetation fires on South America. GOES resolution is 1 Km in the visible channel, 7 and 14 Km for infrared.


Freitas et al. (1999, 2005)

CPTEC/INPE Weather + Air Quality Forecasts with the BRAMS model

Real-time fire emissions 30 Nov 2023

Smoke Forecast for 18UTC 20 NOV 2023 AOD @ 550 nm

How to effectively advance in the numerical forecast of the atmosphere and its interfaces?

How to effectively advance in the numerical forecast of the atmosphere and its interfaces?

We need focus in all three directions:

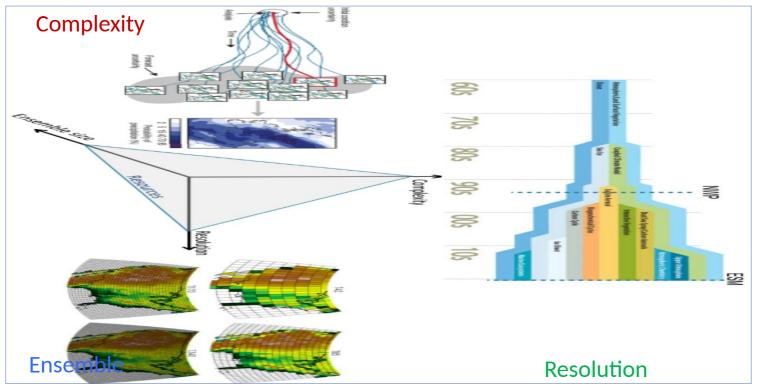


Figure adapted from J.-F. Lamarque (NCAR)

This entire framework assisted by:

- Access, treatment and storage of observational data;
- Data assimilation at different levels of complexity;
- High-performance computing service, management of complex software (millions of code lines);
- Analysis and quantitative evaluation of model results;
- Post-processing, use of IA, interpretation, publication of forecasts;
- Methodologic management of activities, processes and routines,
- Efficient and transparent communication with society and stake-holders

What was proposed in 2021, and what are we working on?

A new paradigm of focus and organization for advancing the numerical weather, climate, and environment forecasting in Brazil.

MONAN

Model for Ocean-laNd-Atmosphere predictioN

In the MONAN project, Brazil adopt a unified and community Earth System model Everyone work on a <u>single</u> modeling system, a <u>single</u> computational code

1. It involves the most relevant Earth System components:

- a) Atmosphere, biosphere and continental soils, cryosphere, oceans, upper space.
- b) Anthropogenic disturbances relevant to the dynamics of the natural system (anthroposphere).

2. Unified:

- a) Suitable for spatial scales of atmospheric phenomena on the order of 10² m to 10³ km.
- b) Suitable for temporal scales of nowcasting, weather, sub-seasonal, seasonal and climate change.

3. Accurate:

- a) Reduced number of approximations and use of state-of-the-art numerical methods for solving differential equations in supercomputers.
- b) Anchored in a robust Data Assimilation System using remote sensing and local observations.
- c) Enhanced with Artificial Intelligence/Machine Learning techniques.

4. Community model:

- a) Open source with free and public access.
- b) Workshops and training for the community.

5. Multi-Institutional Governance:

a) Scientific steering committee formed by representatives of operational and research centers, academy and stakeholders.

How do we organize ourselves for this project?

Scientific Committee of the Earth System Community Model

- Created on April 8, 2021 by the Director of INPE
- Participating Institutions: INPE, INMET, LNCC, INPA, CENSIPAM, DECEA, Army Forces and several Universities

Current Members of SC

Membros internos ao INPE:

- 1. Saulo R. Freitas
- 2. Antonio Ocimar Manzi
- 3. Caio Coelho
- 4. Carlos Bastarz
- 5. Chou Sin Chan
- 6. Renato Galante
- 7. Haroldo Fraga de Campos Velho
- 8. João Gerd
- 9. Joaquim Eduardo Rezende Costa
- 10. Jorge Luis Gomes
- 11. Karla Longo
- 12. Luciano Pezzi
- 13. Luiz Flávio Rodrigues
- 14. Paulo Kubota
- 15. Ronald Buss de Souza
- 16. Celso Luiz Mendes

Membros externos:

- 1. Pedro Dias (IAG/USP) _
- 2. Afonso Paiva (COPPE-UFRJ)
- 3. Enio Pereira de Souza (UFCG)
- 4. Flávia Rodrigues Pinheiro (Marinha do Brasil)
- 5. Gilberto Bonatti (INMET)
- 6. Hélio Abreu Nogueira (FAB)
- 7. Ivan Saraiva (CENSIPAM)
- 8. Julia Cohen (UFPA)
- 9. Luiz Cândido (INPA)
- 10. Luiz Cláudio Oliveira Andrade (Exército)
- 11. Marcia Yamasoe (IAG/USP)
- 12. Fabrício Harter (UFPel)
- 13. Pedro Peixoto (IME/USP)
- 14. Ricardo de Camargo (IAG/USP)
- 15. Roberto P. Souto (LNCC)
- 16. Vinícius Capistrano (UFMS)
- 17._Francisco C. Vasconcelos Jr (FUNCEME)
- 18. Yanina Skabar (SMN Argentina)

How do we organize ourselves for this project? The sub-committees

Committee members collect and document the community's requirements, demands, and counterparts.

- 1. Integrated Modeling System: Pedro Dias/USP
- 2. Atmosphere: Saulo Freitas/INPE
- 3. Continental surface and soils: Antonio Manzi/INPE
- 4. Oceans and Continental and Maritime Ice: Ronald Buss/INPE
- 5. Space weather: Joaquim Costa/INPE
- 6. High Performance Processing and Code Quality: Luiz Flávio Rodrigues/INPE
- 7. Data Assimilation (DA) of the Earth System: João Gerd/INPE
- 8. Advanced DA methods and application of artificial intelligence (AI): Haroldo Campos Velho/INPE
- 9. Pre- and post-processing methods of weather

11Northern Universities: Júlia Cohen/UFPA

12Northeast Universities: Ênio Sousa/UFCG

135 outheast Universities and Research Institutes: Márcia Yamasoe/USP

14Southern Universities: Otávio Acevedo/UFSM

15 Midwest Universities: Vinícius Capistrano/UFMS

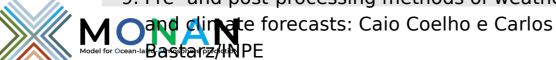
16CENSIPAM: Ivan Saraiva

17NMET: Gilberto Bonatti

1& razillian Navy: Flávia Rodrigues (CHM)

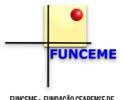
1938 razilian Air Force : Hélio Abreu Nogueira - Ten

Cel Esp Met


20Brazilian Army: Luiz Cláudio Oliveira Andrade – Army Major

21Surface and subsurface hydrology – ASD/Funceme/IPH

Who is already working with us?



With whom are we negotiating collaboration?

Funding and Resources for MONAN's Development and Operational Implementation

MONAN was approved as a

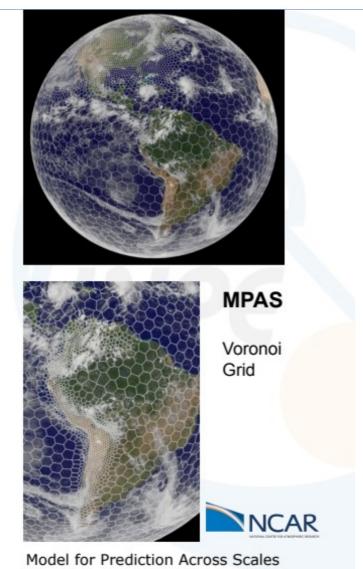
- Strategic Program by the Brazilian Minister of Science and Technology
- 10-year Work Plan (2022-2031)
- Annual budget ~ US\$ 250,000 (under approval)

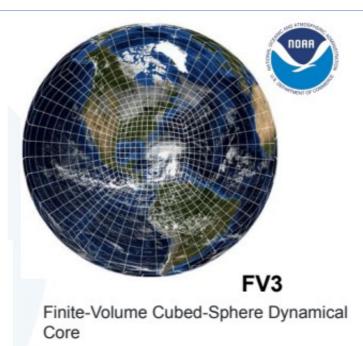
RISC - MONAN Proposal (2023-2026)

- Funded by FINEP Brazilian Agency with ~ US\$ 40 million over four years
- US\$ 24 million for the next supercomputer
- US\$ 5 million for the model and software infrastructure development
- US\$ 11 million for solar energy power plant, maintenance, etc.

CAPES Brazilian Funding Agency ~ US\$ 280,000 (2024-2026)

- Scholarships for PostDoc in NCAR/USA
- Training workshops for the Brazilian community





The candidates for the basis of the next-generation GCM (MONAN) in Brazil: MPAS and SHiELD

Experimental Design with MPAS and SHIELD

MPAS SHIELD

Grid spacing 15 km 13 km

Forecast length 10 days (240 h), starting at 00:00 UTC

Period 06/01/2021 to 06/01/2022 -> selection of intervals (every 5 days)

Temporal resolution 6h

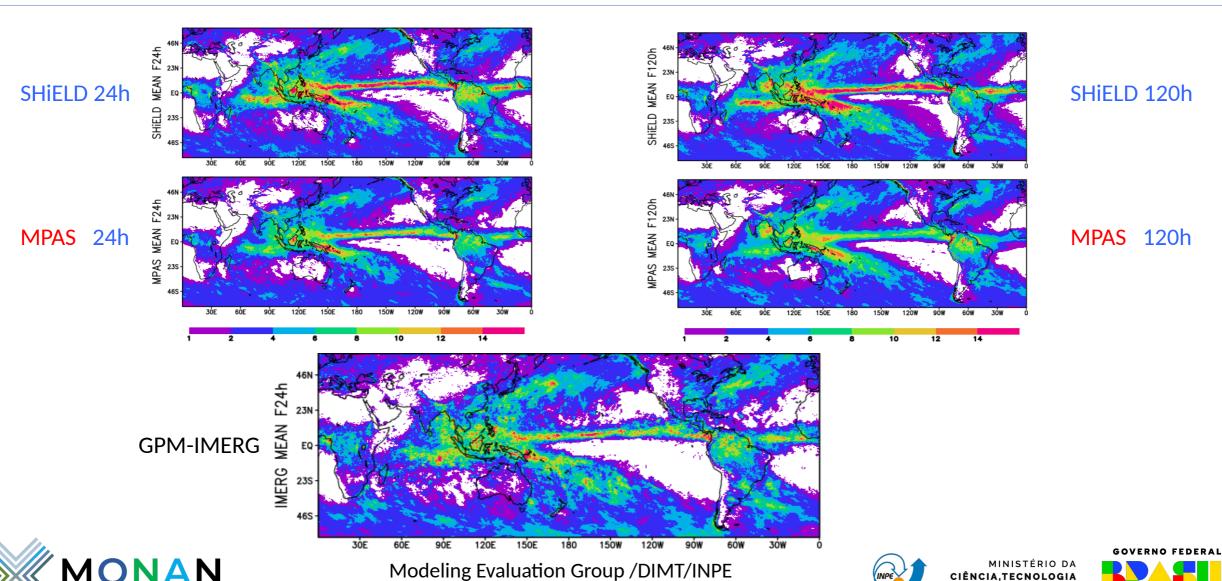
IC ERA5

Output interpolated to 0.25 x 0.25 degree (ERA5) Post-processed variables:

2D: msl, T2m, q2m, u10m, v10m, rain 3D: T, u, v, Z (925, 850, 500 and 250 hPa)

Experimental Design with MPAS and SHiELD

Physics parametrization	SHIELD	MPAS
Radiation	F	RTMG
Land-surface	1	NOAH
Cloud microphysics	GFDL	WSM6
Deep and shallow convection	SAS	GF & Tiedtke
PBL	EDMF	YSU
GWD	GWD	YSU



Mean Global Precipitation

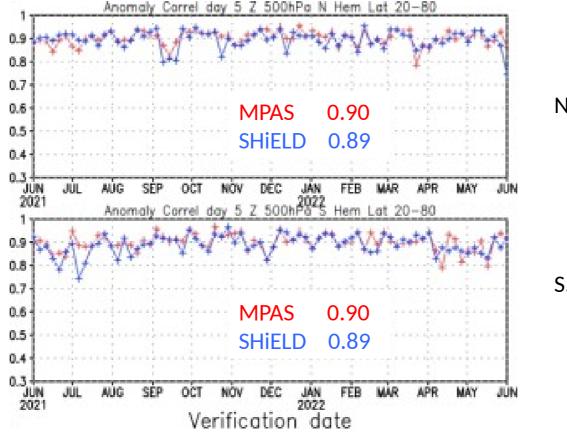
mm/day

E INOVAÇÃO

UNIÃO E RECONSTRUÇÃO

Mean Global Precipitation

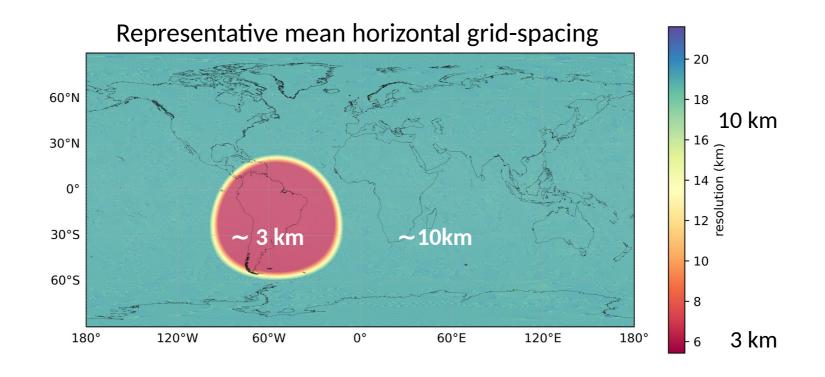
Time integration	IMERG	MPAS	ShiELD		Diff perc.)	Diff perc. ShiELD (%)		
36h	3,20	3,10	3,47		-3,2			8,5	
60h	3,20	3,18	3,52		-0,8			10,0	
84h	3,20	3,24	3,61		1,2			13,0	
108h	3,19	3,27	3,67		3,0			15,0	
132h	3,21	3,31	3,69		3,2			15,0	
156h	3,20	3,34	3,72		4,3			16,2	
180h	3,21	3,35	3,76		4,6			17,2	
204h	3,20	3,38	3,78		5,6			18,0	
228h	3,18	3,38	3,81		6,3			19,9	



Geopotential Height Anomaly Correlation @ 500 hPa Forecast Day 5 (74 cases)

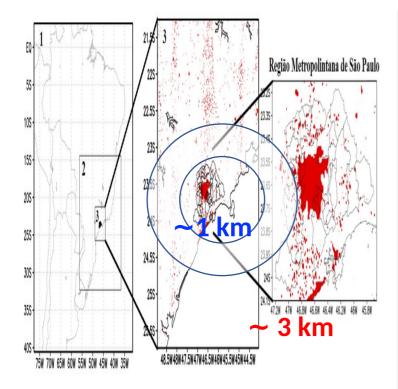
N. Hem.

S. Hem.



Our target:

Weather prediction on a global scale, but with focus on South America



Interlocution with the National Meteorology Network and Regional Centers (operational and academic)

Environmental Prediction on a Regional/Local Scale

Example for the Metropolitan Region of São Pa for implementation by regional centers

• Methods:

- Initial and boundary conditions with analysis/forecasts produced with CPTEC/INPE's global MONAN;
- Addition of weather radar data assimilation for nowcasting with the regional configuration of MONAN.

• Products:

- Weather products (including severe weather);
- Air quality and public health;
- Biometeorology (thermal comfort indicators, heat waves, UV radiation);
- Forecast of energy production (solar, wind);
- Ocean waves;
- ?

The acronym and symbol of MONAN

Monan is a Tupi-Guarani's (originary peoples of S. America) word that means "land without evils", where they live with their ancestors and Gods, with starvation, or any human diseases.

Thanks for your attention! Questions?

