Australia's National Science Agency

Hydrological forecasting and verification in Australia

Joint WGNE-JWGFVR meeting workshop

Sao Paulo

James Bennett | 1 Dec

Runoff in Australia

Fitzroy River (WA)

Todd River

Runoff (mm)

5

0

15

25

50

Barron River

Franklin River

750+

500

200

100

350

Population per square kilometre 5000 to less than 8000 Population 2000 to less than 5000 500 to less than 2000

Bureau of Met. hydrological forecasting systems

Flood Forecasting and Warning

http://www.bom.gov.au/water/

7-day ensemble streamflow forecasts

- Discharge (not level/inundation)
- Hourly time step
- Continually available
- Aimed at water/environmental management

http://www.bom.gov.au/water/7daystreamflow/

- Hybrid statistical-dynamical system
- Separate treatments of uncertainty for rainfall and runoff

Weather/climate

CSIRC

Hydrological modelling

- Divide catchment into irregular 'subareas'
- Rainfall-runoff modelling
- Routing between subareas
- Models are simple by design (for automated optimisation)

Verification – hydrological models

- Commonly used scores:
 - Nash-Sutcliffe Efficiency (NSE)
 - Kling-Gupta Efficiency (KGE)
 - NSE of log-transformed flow
 - bias

$$NSE = 1 - \frac{\sum_{t=1}^{T} (q_{obs}(t) - q_{sim}(t))^{2}}{\sum_{t=1}^{T} (q_{obs}(t) - \overline{q_{obs}})^{2}}$$

$$KGE = 1 - \sqrt{(r-1)^2 + \left(\frac{\sigma_{sim}}{\sigma_{obs}} - 1\right)^2 + \left(\frac{\overline{q_{sim}}}{\overline{q_{obs}}} - 1\right)^2}$$

Time

Forecast verification

"maximise sharpness, subject to **calibration**" Gneiting & Katzfuss 2014

Verification – calibrated rainfall

- Calibration with Bayesian joint probability model + Schaake Shuffle
- 'Coherence' (Krzysztofowicz 1999)
- Reliability, esp. of accumulations in space and time
- Bias (v important for inputs to tuned models)

CSIRC

Temporal cross-validation

Cross-validation

Leave 1-year out

Buffered leave 1-year out (+X)

Error modelling with many zeros

Existing Methods

 z_0

Wang, Bennett, Robertson, Li 2020 WRR

End-to-end Verification

- Acceptance criteria
 - Hydrological model NSE>0.6
 - Positive skill (CRPSS) > 3 days lead time

Bureau Home + Water Information + 7-day Streamflow Forecast

7-day Ensemble Streamflow Forecasts

No flood warnings current for this river system.

Hapuarachchi et al. 2022 HESS

Verification vs communication?

Murray River at Biggara

Thank you

Environment James Bennett

james.bennett@csiro.au

https://people.csiro.au/B/J/James-Bennett

Australia's National Science Agency