

38th Session of the Working Group on Numerical Experimentation (WGNE) 27-01 November 2023 São José dos Campos, SP, Brazil

# Model development overview at INPE/CPTEC

Ariane Frassoni Thanks to S. Freitas and MONAN groups Brazilian National Institute for Space Research, Center for Weather Forecasting and Climate Studies Cacheira Paulista, SP, Brazil ariane.frassoni@inpe.br 27 Nov 2023

## **Contents**

- 1. INPE's current numerical modelling setup & future plans
- 2. MONAN's dynamical core choice
- 3. Physics to be adopted in the first oper version

## INPE produces Numerical Weather, Climate and Environmental prediction

A new paradigm for the environmental modeling over Brazil and South America

#### Current modelling systems

#### **Computer system**

Cray XC50 4160 cores (2018) operation only Cluster DELL to research **Current numerical models** Limited-area models

- BRAMS (since 2003) -AQ and NWP
- Eta (since 1996) -NWP, Clim, Reg Proj
- WRF (since 2018) –
  NWP

#### Global model

BAM – NWP, Subseasonal and Seasonal forecasting (GPC)

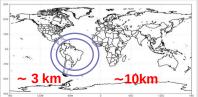
### Model for Ocean-laNd-Atmosphere predictioN

An unified/community Earth System model: Everyone works on a single modeling system, a single computer code

**Community:** Open and free source, maintained by a group of HPC experts; workshops and training for the community

# MONAN's dynamical core




# Future plans:Monan - in Tupi-Guarani language means "the<br/>land without evils" or Ybymarã-e'yma

- Atmosphere-land components operational for NWP in 2024 (initial conditions coming from our current global model); - Atmosphere-land components with data assimilation operational for NWP between 2024-2025;

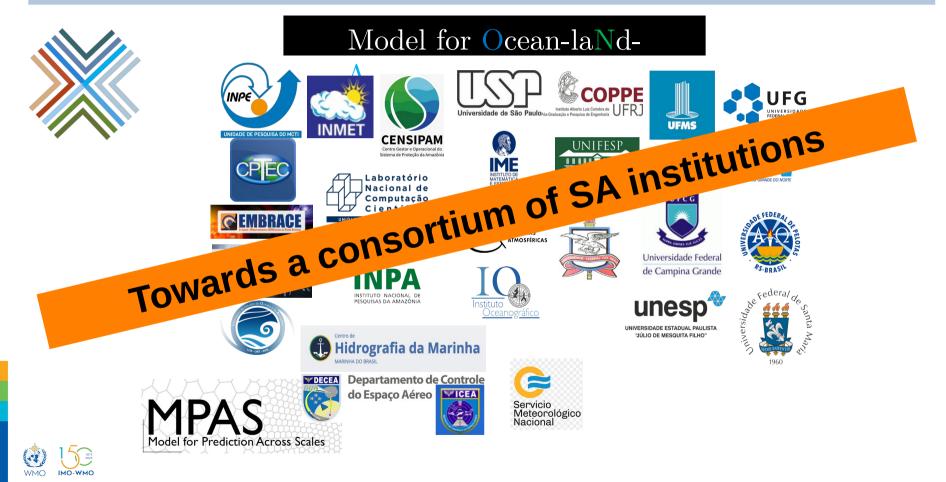
- Atmosphere-land-ocean components to subseasonal to seasonal timescales between 2025-2026 (pending on the new supercomputer);

- Atmosphere-land-ocean-cryosphere components to subseasonal to seasonal timescales in 2027 (pending on the new supercomputer).

Allows local refinement: a single model for regional and global scales

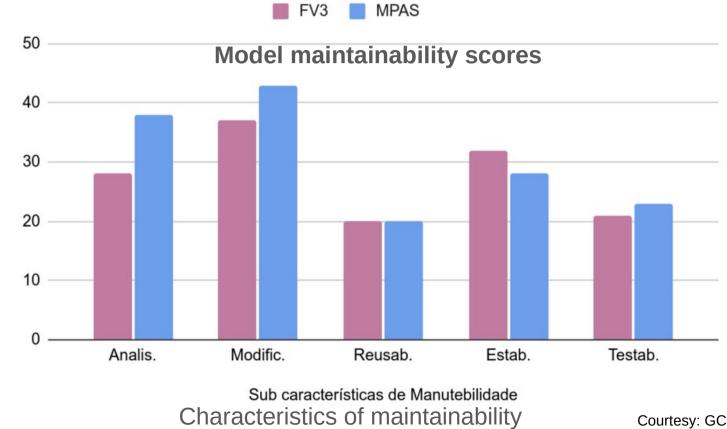


## **Partners**




WMO

IMO-WMO




## **Partners**



### Quality of software evaluation

Pontos



Courtesy: GCC/MONAN

# Model verification: Experiments design

|                     | MPAS                                                              | SHIELD |  |
|---------------------|-------------------------------------------------------------------|--------|--|
| Grid spacing        | 15 km                                                             | 13 km  |  |
| Forecast length     | 10 days (240 h), starting at 00:00 UTC                            |        |  |
| Period              | 06/01/2021 to 06/01/2022 -> selection of intervals (every 5 days) |        |  |
| Temporal resolution | 6h                                                                |        |  |
| IC                  | ERA5                                                              |        |  |

Output interpolated to 0.25 x 0.25 (ERA5)

Post-processed variables: 2D: msl, T2m, q2m, u10m, v10m, rain, 3D: T, u, v, Z (925, 850, 500 and 250 hPa)

# **Model verification**

### **Experiments design**

| Physics parametrization     | MPAS | SHiELD       |  |
|-----------------------------|------|--------------|--|
| Radiation                   | RI   | MG           |  |
| Land-surface                | NC   | ОАН          |  |
| Cloud microphysics          | GFDL | WSM6         |  |
| Deep and shallow convection | RAS  | GF & Tiedtke |  |
| PBL                         | EWMF | YSU          |  |
| GWD                         | GWD  | YSU          |  |

# **Grid point assessment**

# Statistical metrics recommended by the WMO

### **Continuous Variable Forecasts**

- · Anomaly Correlation ACC
- · Bias
- · Root Mean Square Error RMSE
- · Scatterplot

# Predictions of dichotomous variables

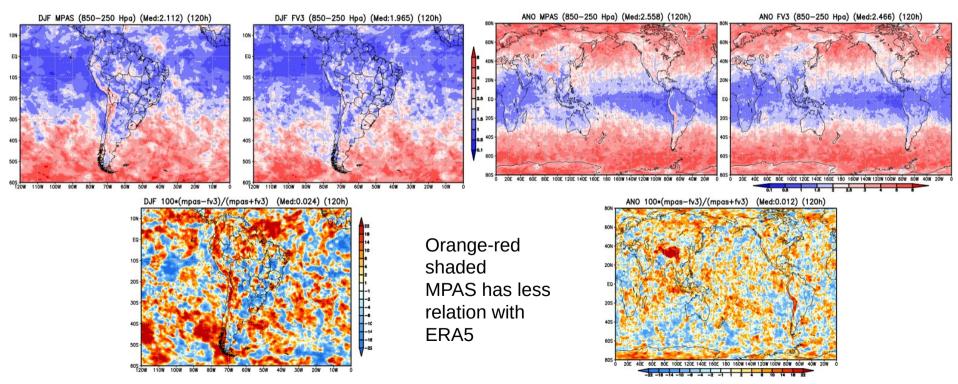
- Frequency Bias
- · Equitable Threat Score (ETS)
- · Probability of Detection (POD)
- · Critical Success Index (CSI)
- False Alarm Ratio (FAR)

## **Mahalanobis Distance**

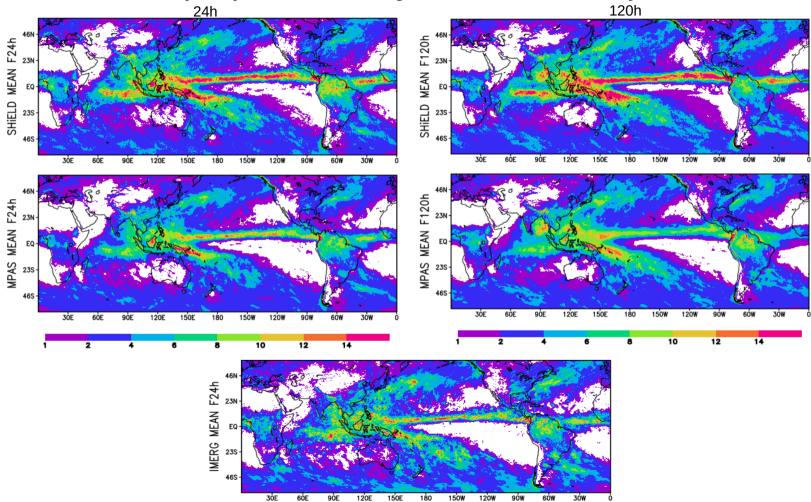
$$D_M(x)=\sqrt{(x-\mu)^TS^{-1}(x-\mu)}.$$

 $\mu$  = (  $\mu_1$  ,  $\mu_2$  ,  $\mu_3$  , ... ,  $\mu_p$  ) <sup>T</sup> and covariance matrix S to a multivariated vector x = (  $x_1$  ,  $x_2$  ,  $x_3$  , ... ,  $x_p$  ) T

Variables used: u, v and T in the post-processed vertical levels

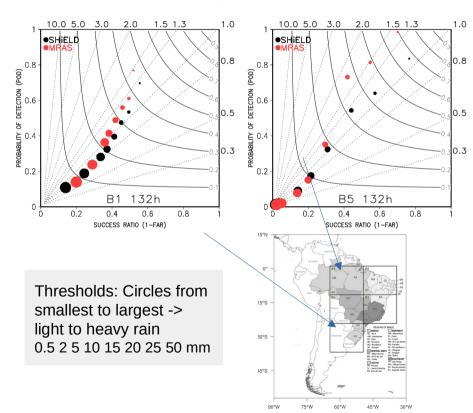

Reference: ERA5

Courtesy: Marcelo Barbio

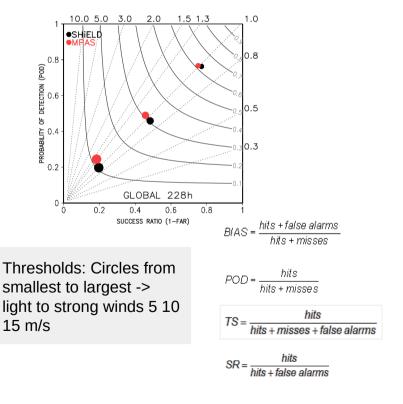

## **Mahalanobis distance**

#### South America 120h - DJF

#### Global 120h - Annual




#### Mean precipitation over the global domain, in mm/day




### **Performance diagram**

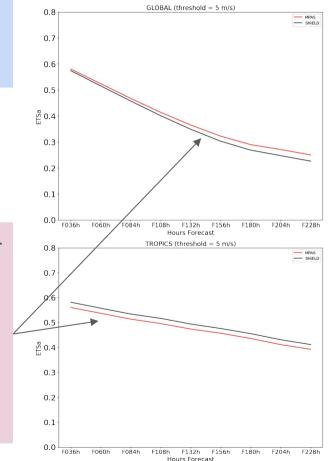
#### Precipitation



#### 10-m wind (m/s)



#### Precip mean intensity computed over the global domain, in mm/day


| Time<br>integration | IMERG   | MPAS    | ShiELD  | Diff MPAS | Diff ShiELD | Diff perc.<br>MPAS (%) | Diff perc.<br>ShiELD (%) |
|---------------------|---------|---------|---------|-----------|-------------|------------------------|--------------------------|
| 36h                 | 3,19928 | 3,09617 | 3,47084 | -0,10311  | 0,27156     | -3,223                 | 8,488                    |
| 60h                 | 3,20317 | 3,17713 | 3,52475 | -0,02604  | 0,32158     | -0,813                 | 10,039                   |
| 84h                 | 3,19727 | 3,23611 | 3,61322 | 0,03884   | 0,41595     | 1,215                  | 13,010                   |
| 108h                | 3,17839 | 3,27442 | 3,65614 | 0,09603   | 0,47775     | 3,021                  | 15,031                   |
| 132h                | 3,20712 | 3,31056 | 3,68918 | 0,10344   | 0,48206     | 3,225                  | 15,031                   |
| 156h                | 3,20342 | 3,34213 | 3,72282 | 0,13871   | 0,5194      | 4,330                  | 16,214                   |
| 180h                | 3,20599 | 3,35401 | 3,75819 | 0,14802   | 0,5522      | 4,617                  | 17,224                   |
| 204h                | 3,20136 | 3,37975 | 3,77914 | 0,17839   | 0,57778     | 5,572                  | 18,048                   |
| 228h                | 3,18150 | 3,38142 | 3,81426 | 0,19992   | 0,63276     | 6,284                  | 19,889                   |

## ETSa 10-meter wind (m/s)

Bias of the models were removed to compute ETS (ETSa)

MPAS performs better for light winds

Differences between MPAS and SHiELD increase with forecast length



Similar results were found for SA and for stronger wind thresholds

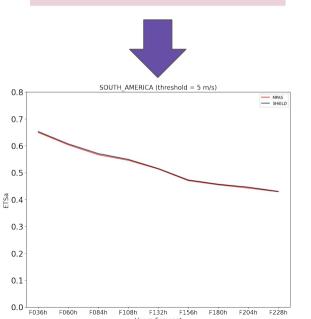





Table 6.3: Possible options for individual physics parameterizations. Namelist variables should be added to the & physics namelist record.

| Parameterization               | Namelist variable        | Possible options | Details                                                 |
|--------------------------------|--------------------------|------------------|---------------------------------------------------------|
| Convection                     | config_convection_scheme | cu_tiedtke       | Tiedtke (WRF 3.8.1)                                     |
|                                |                          | cu_ntiedtke      | New Tiedtke (WRF 4.5)                                   |
|                                |                          | cu_grell_freitas | Modified version of scale-aware Grell-Freitas (WRF 3.6. |
|                                |                          | cu_kain_fritsch  | Kain-Fritsch (WRF 3.2.1)                                |
| Microphysics                   | config_microp_scheme     | mp_wsm6          | WSM 6-class (WRF 4.5)                                   |
|                                |                          | mp_thompson      | Thompson non-aerosol aware (WRF 3.8.1)                  |
|                                |                          | mp_kessler       | Kessler                                                 |
| Land surface                   | config_lsm_scheme        | noah             | Noah (WRF 4.5)                                          |
| Boundary layer                 | config_pbl_scheme        | bl_ysu           | YSU (WRF 4.5)                                           |
|                                |                          | bl_mynn          | MYNN (WRF 3.6.1)                                        |
| Surface layer                  | config_sfclayer_scheme   | sf_monin_obukhov | Monin-Obukhov (WRF 4.5                                  |
|                                |                          | sf_mynn          | MYNN (WRF 3.6.1)                                        |
| Radiation, LW                  | config_radt_lw_scheme    | rrtmg_lw         | RRTMG (WRF 3.8.1)                                       |
|                                |                          | cam_lw           | CAM (WRF 3.3.1)                                         |
| Radiation, SW                  | config_radt_sw_scheme    | rrtmg_sw         | RRTMG (WRF 3.8.1)                                       |
|                                |                          | cam_sw           | CAM (WRF 3.3.1)                                         |
| Cloud fraction for radiation   | config_radt_cld_scheme   | cld_fraction     | Xu and Randall (1996)                                   |
|                                |                          | cld_incidence    | $0/1$ cloud fraction depending on $q_c + q_i$           |
| Gravity wave drag by orography | config_gwdo_scheme       | bl_ysu_gwdo      | YSU (WRF 4.5)                                           |

# **Thanks!**



WORLD METEOROLOGICAL ORGANIZATION





# **Questions?**