

MUMIP

Model Uncertainty – Model Intercomparison Project

WGNE Update

Romain Roehrig, Hannah Christensen* and the MUMIP consortium

*Hannah.Christensen@physics.ox.ac.uk. Atmospheric, Oceanic and Planetary Physics, University of Oxford

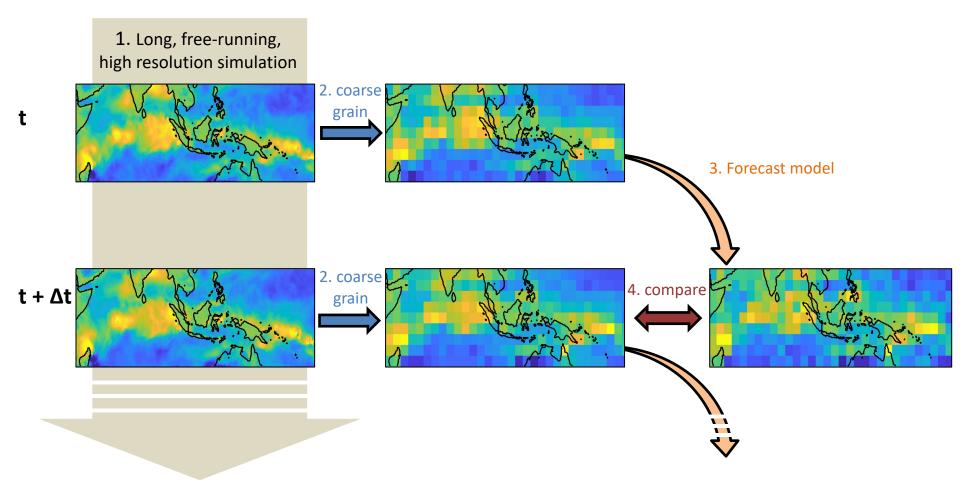
WGNE 38, 28 November 2023, São José Dos Campos, Brazil

Background

- Joint initiative of WGNE and Predictability, Dynamics and Ensemble Forecasting (PDEF) working group
- At the joint WGNE/PDEF meeting in Tokyo, October 2018, a coordinated activity was proposed to evaluate model error across a number of forecast models
- Funding secured to support work
 - NCAR/NOAA DTC June 2021-June 2025
 - Leverhulme Trust: Oxford (ECMWF), Exeter (UK Met Office), Météo-France September 2023-September 2026
- Some key questions:

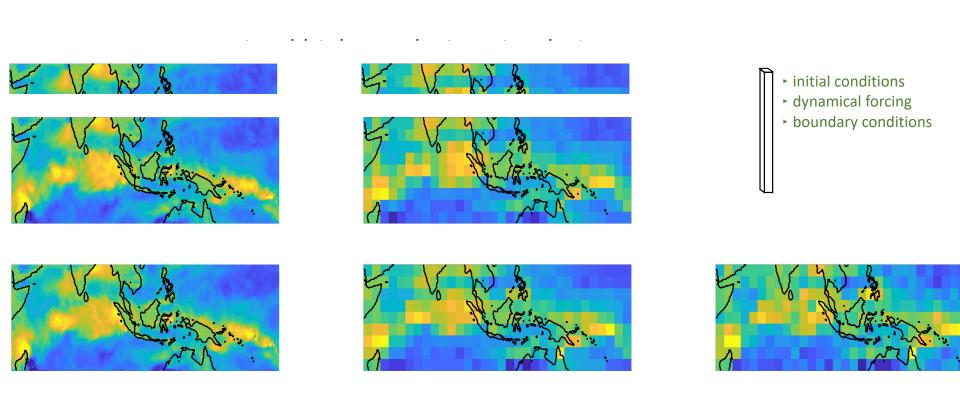
Stochastic parametrisation

- How should we best represent model uncertainty (random error)?
- Are current approaches justified? How can they be improved?


Systematic errors

- How structurally diverse are deterministic parametrisations?
- How different are systematic errors on short timescales?

High resolution simulations


• Can we use coarse-graining as a validation tool for high-resolution models?

Summary of protocol: use high-resolution dataset as reference

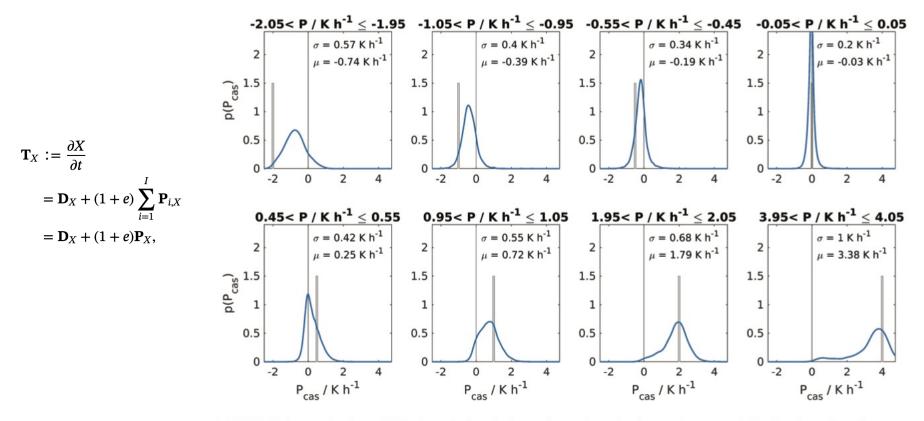
Christensen et al (2018, JAMES) Christensen (2020, QJRMS)

Use SCM as forecast model

Potential to run SCM on computer where high-res data is stored

• Few models can be run over a limited domain, while independent SCMs can be used to tile the targeted limited domain

What information do we have?


- ✓ Total change in (T, q, U, V) in high-resolution dataset as a function of model level, location and start date/time
- Change in (T, q, U, V) in SCM, decomposed into dynamics and individual parametrised tendencies, as a function of model level, location and start date/time

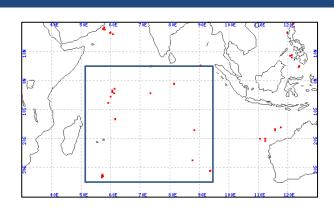
→ Model error statistics as a function of space and time

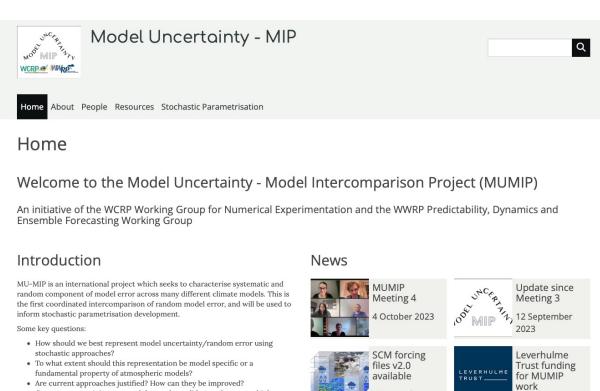
For examples of analysis that can be carried out with this data, please see Christensen (2020, QJRMS)

Case study using UKMO limited area high-res simulation and OpenIFS SCM

e.g. assess SPPT multiplicative noise

FIGURE 3 Testing the multiplicative noise hypothesis. Results are shown for the *T* tendency at model level 77 (approximately 850 hPa). Each subplot shows the distribution of \mathbf{P}_{cas} conditioned on the physics tendency predicted by the SCM indicated by the title of each panel. The mean and standard deviation of the conditional \mathbf{P}_{cas} distribution are shown in each panel. The rectangle shows the **P** distribution for each panel, though note that the height of this distribution is truncated to 1.5 for clarity: it should extend to 10. The numbers of data points used to estimate the pdf for each panel, respectively, are as follows: 131; 4,123; 29,438; 1,114,817; 87,759; 27,608; 4,020; and 162. PDF, probability density function [Colour figure can be viewed at wileyonlinelibrary.com]

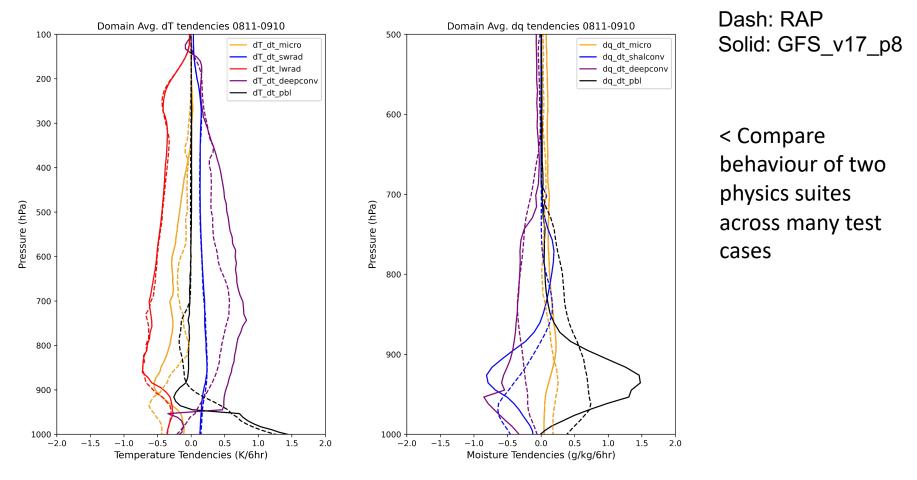

Christensen (2020, QJRMS)


Hannah Christensen

WGNE-36

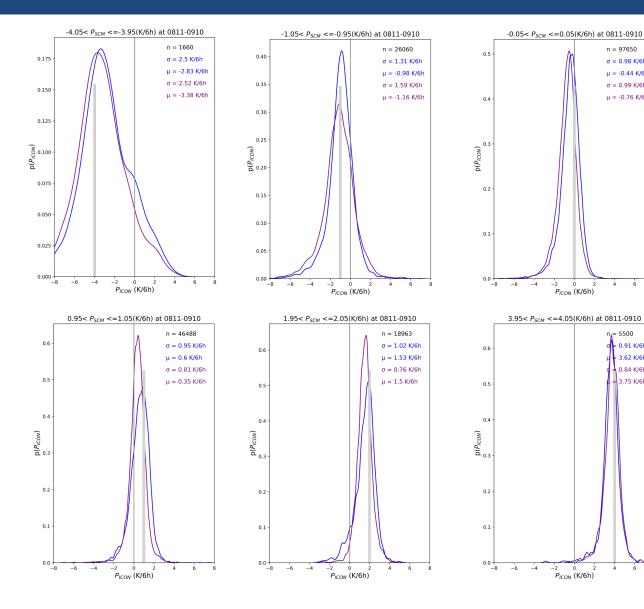
Progress - Oxford

- First set of coarse-grained input fields available
 - 40-day ICON 2.5km DYAMOND Summer simulation
 - Coarse-grained to 0.2 degrees (~22 km)
 - Domain in Indian Ocean [51-95E, 5N-35S]
 - Data on DKRZ Swift system
 - See website: mumip.web.ox.ac.uk



Hannah Christensen

MUMIP update


Progress – NCAR/NOAA

- Followed MUMIP protocol using Indian Ocean dataset:
 - CCPP SCM runs using <u>GFS_v17_p8</u> and <u>RAP</u> physics suites

Courtesy K. Newman and X. Sun

Progress – NCAR/NOAA

Repeat diagnostics from Christensen (2020) to test robustness

n = 97650

 $\sigma = 0.98$ K/6h

 $\mu = -0.44$ K/6h

 $\sigma = 0.99$ K/6h

 $\mu = -0.76 \text{ K/6h}$

n_= 5500

2

0.91 K/6h

3.62 K/6h

0.84 K/6h

3.75 K/6h

- e.g. T850 tendency
- **ICON CG physics** tendency conditioned on RAP
- **ICON CG physics** tendency conditioned on **GFS**
- **ICON** physics tendency estimated as change in T minus CCPP dynamics tendency for each run

Courtesy K. Newman and X. Sun

Looking ahead

Next steps

- New hires will produce equivalent datasets for ECMWF, UKMO, and Météo-France SCMs
- Prepare implementation paper describing protocol, and with first analysis across models (e.g. for BAMS. Lead: Christensen)
- Each institute to analyse dataset with unique angle and diagnostics
 - University of Oxford: stochastic parametrisations/random error
 - University of Exeter: continuous structural parameterization
 - Météo-France: parametric uncertainty and structural (systematic) error

Partners

Representatives of WGNE and PDEF

- Nils Wedi, Romain Roehrig
- Judith Berner, John Methven, Mark Rodwell

Modeling groups/ SCMs

- NCAR/NOAA DTC CCPP
- IFS (University of Oxford)
- UM (UKMO/University of Exeter)
- Météo-France

Benchmark simulations

- MPI (ESIWACE)

Analysis

– All

Knowledge transfer (RTO)

- ECMWF
- NOAA
- Met Office

Thanks for listening

mumip.web.ox.ac.uk

Hannah.Christensen@physics.ox.ac.uk