

WGNE Aerosol Project: Evaluating the impact of aerosols on the Subseasonal Prediction

Ariane Frassoni*

Angela Benedetti, Andrea Molod, Frederic Vitart, Georg Grell, Paul Makar, Francois Engelbrecht and many others *Brazilian National Institute for Space Research, Center for Weather Forecasting and Climate Studies Cacheira Paulista, SP, Brazil ariane.frassoni@inpe.br 30 Nov 2023

From: Progress in subseasonal to seasonal prediction through a joint weather and climate community effort

The S2S Prediction Gap Higher SEASONAL OUTLOOKS WEATHER EVENT S2S EXTREMES ndividual storm event Tropical cyclone activity, blizzards, rainstorms heat waves, storm tracks WGNE Aerosol hurricanes severe weather threats **Project:** A Joint **Overarching** Prediction skill objective: Improving Initiative of model capabilities WGNE, WWRPvia incorporating/ integrating WCRP/S2S composition, weather and climate and GAW Lower 3 months 2 weeks 1 month hours 12 months

Prediction lead time

Experiment characteristics

Model	Experiment	Start date	Hindcasts	Ensemble members
GEOS-S2S/NASA	Climatological aerosols	29 Aug 26 Aug	2003-2019	4
	Direct + Indirect effect	29 Aug 26 Aug	2003-2019	4
	Direct effect only	29 Aug 26 Aug	2003-2019	4
IFS/ECMWF	Climatological Direct effect only	1st Sep	2003-2018	5
NOAA	Climatological Direct effect only	1st Sep	2003-2018	5
KMA	Direct + indirect effect**	1th, 9th, 17th, 25th of each month	1996-2016	10 (5 for stochastic * 2 for time varying)

**Control run: GloSea6 + offline oxidants chemistry + 5 mode aerosol scheme

Experiment run: GloSea6 + standard troposphere chemistry + 5 mode aerosol scheme

Ongoing work

Computing statistical scores

- correlation between ensemble mean and observations anomalies
- standard deviation ratio
- bias of the ensemble mean
 - 2-meter temperature anomalies
 - precipitation anomalies
 - surface fluxes anomalies
 - surface net downward longwave flux
 - surface net downward shortwave flux
 - AOD
 - Climatic indices

Questions?

Mean bias

-10

-5

Climatological aerosols

120°E

7.5

120°E

10.0

Biomass burning emissions in tropical areas Shi et al., 2020

Improvement Degradation

INPE

Mean bias

Climatological aerosols

10.0

Biomass burning emissions in tropical areas Shi et al., 2020

-10

-10.0

iner

i0°I

:0°N

10°5

in°

)0°5 -

NASA

-7.5

-5.0

-2.5

00

60°W

-5

0.0

T2<u>M BIAS</u> (from Era5) [(averge over years]

2.5

5.0

7.5

INPE

Degradation

longitude [degrees_east]

Bias differences: INT – NOINT

NASA

INPE

ECMWF

Improvement

Degradation

Correlation between the ensemble mean of members a n d

¹¹ observed (ERA5) 2 -meter temperature anomalies -

Correlation between the ensemble mean of members a n d

observed (ERA) -meter temperature anomalies **E X P I NT**

Correlation between the ensemble mean of members a n d

observed (ERA) precipitation anomalies - Exp NOINT

Correlation between the ensemble mean of members a n d

observed (ERA) precipitation anomalies - Exp INT

Correlation between the ensemble mean of members and observed (ERA) surface net downward longwave flux anomalies - **E x p NOI NT**

Correlation between the ensemble mean of members and observed (ERA) surface net downward longwave flux anomalies - **E x p I NT**

Correlation between the ensemble mean of members and observed (ERA) surface net downward shortwave flux anomalies - **E x p NOI NT**

Correlation between the ensemble mean of members and observed (ERA) surface net downward shortwave flux anomalies - **E x p I NT**

Precipitation anomaly - September 2018 - Exp NOINT

NASA

INPE

Precipitation anomaly - September 2018 - Exp INT

INPE

Conclusions

Aerosol-radiation interaction is, in general, well represented by NWP and climate models

Subseasonal experiments show improved skill for near surface meteorological variables

Impressive increase in correlation for surface net downward shortwave and longwave fluxes anomalies over oceans, especially for weeks 3-4

Improvement in precipitation and temperatures (not shown), especially for weeks 3-4

Aerosol-cloud interaction is a key process to be modeled in longer timescales

The WGNE Aerosol project: Evaluating the impact of aerosols on Numerical Weather and Subseasonal Prediction

For more information visit:

https://wgne.net/activities/on-going-activities/

https://wgne.net/wp-content/uploads/ / / WGNE_S2 S_GAW_Aer_1 2 2 0 2 0 .pdf

Extra slides

Thanks!

BB in Amazon

WGNE Exercise Evaluating Aerosols Impacts on Numerical Weather Prediction Importance of aerosols for S2S predictability

May-June 2003-2015

- 11 ensemble members
- 4 experiments:

INPE

- → Two different climatologies
- → Prognostic aerosols initialized using the timevarying CAMSira
- → Prognostic aerosols initialized using a fixed climatology (based on a CAMS experiments without data assimilation) –PROG2

Only direct effect was considered

Effective radiative forcing

Increased confidence in the quantification of changes in the ERF -> improved observational records and closure

INPE

ERF: allows rapid adjustments to perturbations, for all variables except for global mean surface temperature or ocean temperature and sea ice cover

ERF**aci** (aer-cloud interactions) contributes most (75-80%) to the total aerosol effect (high confidence)

Forster and coauthors, AR6 IPCC