Towards Exascale - members review

Nils P. Wedi European Centre for Medium-Range Weather Forecasts (ECMWF)

Contributions from: INPE Brazil, Canadian Meteorolgical Centre (CMC), Chinese Meteorological Agency (CMA), Meteo-France (MF), LMD and IPSL, German Weather Service (DWD), Japan Meteorolgical Agency (JMA), Hydrometeorological Centre of Russia (HMC), UK MetOffice, Navy Research Laboratory (NRL), National Centre Atmospheric Research (NCAR), National Weather Service (NOAA/NCEP), ECMWF, WMO Research Board

The race to exaxcale computing

- Weather and Climate models are a good example of applications that aim to exploit exascale.
 - "...is also representative of other simulation domains that rely on gridbased solvers of partial differential equations, such as seismology and geophysics, combustion and fluid dynamics in general, solid mechanics, materials science, or quantum chromodynamics."
- They are in general "low arithmetic intensity" applications.
- A possible roadmap is:
 - Long-term scientific aim: a 100m global model
 - The practical interim goal post is a 1km global model
 - This would require a ~100-fold improvement in speed
 - Combination of architecture design and algorithmic design

Reflecting on the Goal and Baseline for Exascale Computing: A Roadmap Based on Weather and Climate Simulations

Table 1. Ambitious target configuration for global weather and climate simulations with km-scale horizontal resolution accounting for physical Earthsystem processes, and with today's computational throughput rate.

Horizontal resolution	1 km (globally quasi- uniform)
Vertical resolution	180 levels (surface to \sim 100 km)
Time resolution	0.5 min
Coupled	Land-surface/ocean/ ocean-waves/sea-ice
Atmosphere	Non-hydrostatic
Precision	Single or mixed preci- sion
Compute rate	1 SYPD (simulated years per wall-clock day)

Modified from P.L. Vidale talk at DiRAC workshop 2021 London

WMO perspective

The Benefits of Exascale—for Who?

- Over 98% of computing power worldwide is in Europe, Asia, and North America
- Over 72% belongs to China, Japan, and the U.S.
- Regions most at risk from climate change have few or no computing resources

Goal: Identify critical gaps between members with and without significant computing resources

TOP 500 Share of Performance

% of flops

DESTINATION EARTH

EUROHPC: €8 BILLION PROGRAMME TOWARDS EXASCALE

LUM

Supercomputers

Currently six EuroHPC supercomputers are under construction across Europe

*from Sept 2022

The LUM system will be a Cray EX supercomputer supplied by Hewlett Packard Enterprise (HPE) and located in Finland.			
Sustained performance:	375 petaflops		
Peak performance:	552 petaflops		
Compute partitions:	GPU partition (LUMI-G), x86 CPU-partition (LUMI-C), data analytics partition (LUMI-D), container cloud partition (LUMI-K)		
Central Processing Unit (CPU):	The LUMI-C partition will feature 64-core next-generation AMD $\text{EPYC}^{\mbox{\tiny TM}}$ CPUs		
Graphics Processing Unit (GPU):	LUMI-G based on the future generation AMD Instinct $^{\mbox{\tiny TM}}$ GPU		
Storage capacity:	LUMI's alorage system will consist of three components. First, three will be a 7- petalysite particle of util-safe stars altorage, combined with a more traditional 80- petalytic capacity storage, based on the Luster parallel filesystem, as well as a data management service, based on chept and being 30 gelabyles in volume. In total, LUMI will have a storage of 117 petalytes and a maximum I/O bandwidth of 2 terabyles per second		
Applications:	AI, especially deep learning, and traditional large scale simulations combined with massive scale data analytics in solving one research problem		
Other details:	LUMI takes over 150m2 of space, which is about the size of a tennis court. The weight of the system is nearly 150 000 kilograms (150 metric tons)		

© HPF

- 3 large (O(100PFlops)) supercomputers in Finland, Italy, Spain
- 5 smaller ones (size of Archer in UK) in Luxembourg, Slovenia, Portugal, Czech Republic, Bulgaria
- 1-2 high-end supercomputers (~1000 Pflops) by 2024

MareNostrum 5 ~314 Pflops *from July 2023

*from March 2023 Leonardo Italy: LEONARDO 322/249 PFlops

© Atos LEONARDO will be supplied by ATOS, based on a BullSequana XH2000 supercomputer and lo Italy Sustained 249.4 petaflops performance 322.6 netaflons formance mpute titions: Booster, hybrid CPU-GPU module delivering 240 PFlops, Data-Centric, de Pflops and featuring DDR5 Memory and local NVM for data analysis ntral it (CPU) Intel Ice-Lake (Booster), Intel Sapphire Rapids (data-centric) aphics NVIDIA Ampere architecture-based GPUs, delivering 10 exaflops of FP16 Tenso it (GPU) Flow AI performance Leonardo is equipped with over 100 petabytes of state-of-the-art storage capacity orage bacity : and 5PB of High Performance storage The system targets: modular computing, scalable computing applications, dataanalysis computing applications, visualization applications and interactiv computing applications, urgent and cloud computing plication Leonardo will be hosted in the premises of the Tecnopolo di Bologna. The area devoted to the EuroHPC Leonardo system includes 890 sqm of data hall, 350 sqm of data storage, electrical and cooling and ventilation systems, offices and ancillary her details

CECMWF

a maximum of 10% of the Union's access time is dedicated to strategic initiatives

Courtesy P.L. Vidale

DESTINATION EARTH

EU's Destination Earth (DestinE) initiative

Funded by the to the the the the teuropean Union

DestinE's Digital Twins: extreme computing challenges

Could the world's mightiest computers be too complicated to use?

China, Japan and the US are racing to build the first exascale computer - but devising programmes clever enough to run on them is a different story

Solutions

- Numerical methods, algorithms, data structures
- Machine learning
- Programming models
- Heterogeneous processing, memory, interconnect technology

... make sure that technology is not running away from us!

Summary of Recommendations

For the Research Board and WMO Members

We recommend urgency in dedicating efforts and attention to disruptions associated with evolving computing technologies that will be increasingly difficult to overcome, threatening continued advancements prediction capabilities.

MMO ON

The increasing scientific and computing complexity will require major efforts to adapt or rewrite earth system prediction models. In addition to scientific accuracy, models must be developed for performance, portability, and productivity. The cost of computing resources, power consumption, and the related carbon footprint must be considered along with the benefit of improved predictability. Requirements to make data centers carbon neutral are already in force in a growing number of countries.

Scientists, model developers, computer scientists and software engineers need to work as equal partners on design, development, and maintenance of applications to overcome scientific, computing, and data challenges. A data-in-place strategy is needed to support the increase in data volume from observations, model and ensemble output, and post processing. This will require colocation of HPC and data, with methods to access, extract, analyze, visualize, and store data by requesting processes & users.

Executive Summary of members' reports

• Dynamical core improvements or entirely new developments, in particular preconditioning of solvers, alternative time integration methods, new/alternative spatial discretisations, multiple grids for ESM components and coupling methods

- Targeting atmosphere, ocean and other components
- MPI optimisations, load-imbalance vs speed of communication
- Reduced (single/mixed) precision, memory needs optimisations
- GPU adaptation efforts, major code refactoring efforts, hybrid CPU-GPU compute, DSL use, shared challenge of different programming models
- Machine learning algorithms that provide higher arithmetic intensity to replace components of ESMs
- Analysing the energy efficiency (and hence cost) of execution
- IO optimisation, data compression, IO-server, and refactoring of data production pipelines
- End-to-end data production and consumption

Hydrometeorological Centre of Russia – SL-AV model

Memory usage optimization. Change of model state vector storage from a single array with the size $(6 \ NLEV + 5, NLON, NJ)$ to separate arrays with the size (NLEV, NLON, NJ).

- 70km model 16-22% runtime reduction
- 10km model 30% runtime reduction

Single precision computations. Working on further implementation of single precision computations.

Modification of grid-point space approximations for reduced grid. Testing of local horizontal schemes instead of Fourier space-based approximations within a 2d SWE prototype. Good results within idealized testcases.

New parallel geometric multigrid solver for reduced grid.

Preliminary strong scaling results. Test problem at 20km reduced grid with 30 vertical levels scales at least to 4608 cores.

Courtesy M.Tolstykh and G.Goyman

Helmholtz solver (PCSI) for GRAPES-GFS

PGCR

Preconditioned Classical Stiefel Iteration (PCSI)

\mathbf{x}_0 , estimated eigenvalue boundary $[v, \mu]$	Maximum and minimum eigenvalues,
1, $\alpha = \frac{2}{\mu - \nu}$, $\beta = \frac{\mu + \nu}{\mu - \nu}$, $\gamma = \frac{\beta}{\alpha}$, $\omega_0 = \frac{2}{\gamma}$; $k = 0$;	priori information
2, $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$; $\mathbf{z}_0 = M^{-1}\mathbf{r}_0$; $\mathbf{x}_1 = \mathbf{x}_0 - \gamma^{-1}\mathbf{z}_0$; $\mathbf{r}_1 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$	$\mathbf{x}_{1}; \ \mathbf{z}_{1} = M^{-1}\mathbf{r}_{1};$
3, while $k \le k_{\max} do$	
4, $k = k + 1$; $\omega_k = 1/(\gamma - \frac{1}{4\alpha^2}\omega_{k-1})$;	mv
5, $\Delta \mathbf{x}_{k} = \omega_{k} \mathbf{z}_{k-1} + (\gamma \omega_{k} - 1) \Delta \mathbf{x}_{k-1};$	
6, $\mathbf{x}_k = \mathbf{x}_{k-1} + \Delta \mathbf{x}_{k-1}$; $\mathbf{r}_k = \mathbf{b} - \mathbf{A}\mathbf{x}_k$;	tehalo and preconditioning
7, $update halo(\mathbf{r}_k); \mathbf{z}_k = M^{-1}\mathbf{r}_k;$	
8, if $k\%n_c == 0$ then check convergence;	lobal communication
9, end while	

PCSI avoids frequent calculation of communication-intensive inner products.
The convergence speed of PCSI reaches its theoretical optimum when the maximum and minimum eigenvalues are included in the algorithm to determine the recurrence coefficients.

Performance Optimization: Higher Order

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Microphysics (PUMAS) Performance on CPU vs GPU

Experiment: CAM (192x288 lat-lon mesh; 32 levels; FP64; 36 MPI ranks/node or GPU) was run on CPU with PUMAS microphysics offloaded to GPU.

Equipment: NVIDIA V100 GPU was compared to Intel Xeon Broadwell and newer Skylake CPUs

Upper Right: CPU (cool colors) and GPU (warm colors) performance Lower Right: Data transfer (cool colors) vs computation (red) times for different chunk sizes (PCOLS)

Take Aways:

Clearly GPUs favor larger chunk sizes (PCOLS) and higher occupancy (Cols/GPU).

Excluding data transfer overhead, PUMAS-GPU is 7x faster than a CPU node: 5 Mcols/sec (GPU) vs 0.7 Mcols/sec (CPU)

Able to compare directive-based GPU offload schemes: OMP is slower than OpenACC, but improving!

Slides courtesy of Jian Sun, NCAR

Data transfer could be more time-consuming than computation

Modeling the Climate System at Ultra-High Resolutions

Loft: EarthWorks Computational Challenges 7 12

WEATHER & CLIMATE DWARFS – VERIFIABLE COLLABORATIVE TOOLS FOR VENDORS AND ACADEMIA

WWW. WANGE WEATHER COART Spectral transforms dwarf speedup on Juwels Booster Time per inv+dir timestep at TCO3999

Signation Earth EUROART

FOR

DSL tool chain in collaboration with CSCS and ETH Swizerland

Energy efficiency GPU vs. NEC Aurora

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Energy per simulated day (Wh/day) ×32 128 Number of GPUs X 50 Number of Vector Engines X \times^{16} 64 more efficient × × × ×³² \mathbf{x}^{16} \times^4 × × x2 24 0 150 0 50 100 200 250 Time per simulated day (s/day)

faster

- : GPU work in progress
- : GPU not yet optimized for this experiment and machine

As reported by nvidia-smi (NVIDIA) and veda-smi (NEC)

Time loop only Excluding the CPU host GPU: out-of-the-box performance Vector Engine: optimized setup

Experiment setup:

- ~ DWD ensemble forecast
- Global R2B6
 ~ 328 000 cells (40 km)
- + Nested grid over Europe
 ~ 49 000 cells (20 km)
- Output disabled

Compressed NetCDF for I/O and Inline Post-Processing ž A decision was made to write out GFS.v16 forecast history files (atmf and sfcf) in औ netCDF format with compression. Parallel I/O was developed with updated netCDF and HDF libraries. \aleph compression ratio: Atmf 3d (33.6 GB to 6.7 GB), lossy compression **5**x 2.5x (2.8 GB to 1.1 GB), lossless compression sfc 2d 明 Inline post-processing (post library) makes use of forecast data saved in memory for post processing, reduces I/O $\mathbf{\Lambda}$ activity, and speeds up the entire forecast system. Since lossy compression is applied for writing out forecast history files, *inline* 512

post generates more accurate products than the standalone offline post.

The acronym MONAN

MONAN

Model for Ocean-laNd-Atmosphere predictioN

"Monan's representation is like something infinite. For the Tupi-Guarani-speaking nations, there is no notion of Christian <u>Paradise</u>, <u>heaven</u>, or <u>hell</u> as in Christian beliefs, but the "<u>Land without evils</u>" or Ybymarã-e'yma, the place where they live with their ancestors and gods, without war, famine, or any human ailments."

MONAN symbolizes the search for a better, sustainable, fraternal world with social justice.

And the community model contributes to the search for this world by generating more accurate information on the behavior and evolution of the components of planet Earth

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÕES

Annex: Members' slides

CMC HPC/Exascale Projects: Science

- Work is ongoing for an AI-based replacement for radiation scheme to be tested in the Canadian climate model
- Planned upgrades to the existing modelling system:
 - A new preconditioner to make the iterative elliptic solver more scalable (ready)
 - SLIMEX : semi-Lagrangian Implicit-Explicit time integrator
 - Combine SL and IMEX BDF2 time integrator
 - Second order in time, no extra off-centering
 - Only one call to the elliptic solver per time step
 - High-level threading with OpenMP (partially implemented)
- Development of new algorithms:
 - Moving from a Yin-Yang grid to a rotated cubed-sphere grid
 - A space-time tensor formalism is used to express the equations of motion covariantly
 - The spatial discretization with the direct flux reconstruction method
 - New multistep exponential and implicit/Rosenbrock time integrators
 - Low-synchronization matrix-free Krylov solver

CMC HPC/Exascale Projects: Infrastructure

- Development of a new non-blocking IO server to solve increased IO bottleneck
- New more efficient MPMD multi-model coupling system
- Update to internal data format to enable parallel IO and multiple compression scheme allowing higher data compression
- Enable efficient check pointing on all model suites (standalone/coupled)

Hydrometeorological Centre of Russia – SL-AV model

Memory usage optimization. Change of model state vector storage from a single array with the size $(6 \ NLEV + 5, NLON, NJ)$ to separate arrays with the size (NLEV, NLON, NJ).

- 70km model 16-22% runtime reduction
- 10km model 30% runtime reduction

Single precision computations. Working on further implementation of single precision computations.

Modification of grid-point space approximations for reduced grid. Testing of local horizontal schemes instead of Fourier space-based approximations within a 2d SWE prototype. Good results within idealized testcases.

New parallel geometric multigrid solver for reduced grid.

Preliminary strong scaling results. Test problem at 20km reduced grid with 30 vertical levels scales at least to 4608 cores.

Courtesy M.Tolstykh and G.Goyman

HPC efforts at Météo-France

Towards a general use of single-precision (32 bits) in operational NWP systems.

- 1. Operational implementation in 5 AROME¹ operational systems
- 2. Next steps: operational use, whenever possible,
 - i. in all AROME and ARPEGE forecasts
 - ii. in all trajectories within the assimilation cycle
 - iii. parts of assimilation

Adaptation to hybrid processors with accelerators:

- 1. Code refactoring (e.g., new memory structure)
- 2. Development of automatic source-to-source code transformation tools (Loki, Fxtran)
- 3. Porting small pieces of code (dwarfs) to Nvidia GPU
- 4. Porting on Nvidia PGI and Intel OneAPI environments
- 5. Work done in collaboration with ECMWF and ACCORD² partners
- 6. Hectometric LAM configuration developed within DestinE On Demand project (phase 1)
- TRACCS³: 8-year (2023-2030) French national project for advancing climate modelling for climate services.
 ➤ 1 WP devoted to new computing paradigms (portability, efficiency, composability, trainable)

¹ Météo-France LAM NWP operational system

- ² <u>A COnsortium for convective-scale modelling Research and Development</u>
- ³ Transformative Advances of Climate Modelling for Climate Services

Input from Francois Bouyssel

HPC efforts for LMDz

Code improvements, increased efficiency, and preparing GPUs.

- 1. **DYNAMICO** (new dynamical core) already ported to GPU
- 2. Code refactoring for model physics: improve portability, readability, composability. Clarification of interfaces between parameterizations
- 3. Tests using mixed precision.
- 4. TRACCS framework

Input from Romain Roehrig

Tackling most optimisation aspects concurrently to avoid bottlenecks.

- 1. Reduce memory footprint: e.g., fewer local and global arrays, memory access limitation
- 2. Reduction the number of communications: gathering communications, using non-blocking communications, using different communication strategies (e.g., collectives, one-sided)
- 3. Code refactoring: use of tiles for memory cache, introducing OpenMP
- 4. I/O with XIOS
- 5. Exploring porting to GPU, using directives or **PSyclone**
- 6. Single/mixed precision within some NEMO subgroups

Using hybrid resolutions:

- 1. Coupling using OASIS¹ or AGRIF² for coarse-graining of biochemistry
- 2. Coupling using OASIS for separating ocean and sea-ice models on different grids (e.g., North Pole)
- 3. Same for the iceberg model
- 4. Multiple zooms and grid-nesting to achieve very high resolution wherever relevant (applicationdependent)
 - Balancing HPC load becomes critical

Input from Sebastien Masson

¹ Model coupling tool
 ² Zoom capability of NEMO

EarthWorks:

For Peter

COLORADO STATE UNIVERSITY

AreandDee LLC

Come scale away...

VCAR

©.

NVIDIA

Richard Loft², Sheri Mickelson¹ Thomas Hauser¹, Michael Duda¹, Dylan Dickerson¹, Supreeth Suresh¹, John Clyne¹, Jian Sun¹, Chris Fisher¹, Mariana Vertenstein¹, Donald Dazlich³, Dave Randall³, Raghu Raj Kumar⁴, Pranay Reddy Kommera⁴

1 National Center for Atmospheric Research 2 AreandDee, LLC 3 Colorado State University 4 NVIDIA Corporation

EarthWorks Strategy for GSRM

GPU-resident components Use regional refinement capabilities of MPAS to Image from: Banesh, D., Petersen, reduce cost of tuning climate parameterizations M., Wendelberger, J. et al. Environ for meteorological length scales Earth Sci 78, 623 (2019). **Target heterogeneous computing with GPUs Prioritize Accelerating 1) Atmosphere and 2) Ocean** Target large systems, e.g. exascale "Leadership Class" Systems Adopt an end-to-end approach to addressing scalability issues 1e-4 m2/s2 $2 \text{ m}^2/\text{s}^2$ **CPU-resident components** I/O & Analysis

WCRP Workshop Modeling the Climate System at Ultra-High Resolutions

EarthWorks testing status: GPU

Microphysics (PUMAS) Performance on CPU vs GPU

Experiment: CAM (192x288 lat-lon mesh; 32 levels; FP64; 36 MPI ranks/node or GPU) was run on CPU with PUMAS microphysics offloaded to GPU.

Equipment: NVIDIA V100 GPU was compared to Intel Xeon Broadwell and newer Skylake CPUs

Upper Right: CPU (cool colors) and GPU (warm colors) performance Lower Right: Data transfer (cool colors) vs computation (red) times for different chunk sizes (PCOLS)

Take Aways:

Clearly GPUs favor larger chunk sizes (PCOLS) and higher occupancy (Cols/GPU).

Excluding data transfer overhead, PUMAS-GPU is 7x faster than a CPU node: 5 Mcols/sec (GPU) vs 0.7 Mcols/sec (CPU)

Able to compare directive-based GPU offload schemes: OMP is slower than OpenACC, but improving!

Slides courtesy of Jian Sun, NCAR

Data transfer could be more time-consuming than computation

Modeling the Climate System at Ultra-High Resolutions

Loft: EarthWorks Computational Challenges 7 27

Atmospheric Dycore (MPAS-7) CPU/GPU Performance

Experiment: MPAS-7 (5.9M cell mesh; 56 levels; FP32) ran dry baroclinic test case for 10 simulated days

Equipment: Selene supercomputer; nodes = AMD Dual socket EPYC 7742 "Rome" CPUs with 8x NVIDIA A100 GPUs; 10 HDR links/node.

Upper Left: Benchmark of 128-core ROME CPU node vs A100 GPU Lower Left: Amdahl comparison of GPU performance for MPAS-6 vs MPAS-7. Compute (m) has gotten worse; latency has improved.

Take Aways:

Early scaling looks impressive - and 3.5x faster than CPU node.

Latency (t0) kills multi-GPU scalability, represented by dotted green line). Have traced this issue to asynchronous MPI_Wait.

Slowdown of MPAS-7 compute (m) was recently isolated to not declaring new variables GPU resident.

With upgrades, **4 SYPD** at 10 km on 256 A100s achievable.

Thanks to Raghu Raj Kumar of NVIDIA for benchmarking MPAS-7!

	m	standard deviation	t0	standard deviation
MPAS 6.3	8.00964	0.211429	0.06542	0.006820
MPAS 7	10.56827	0.317847	0.04126	0.010253

Modeling the Climate System at Ultra-High Resolutions

Performance comparison between two 40c Broadwell nodes, and two V100 (Prometheus) and two A100 (Selene) GPUs

Experiment: Testcase = "EC60to30"; dt = 30 min; 118K cells/GPU; 60 Levels; FP64; 1 MPI Rank/GPU

Met Office NGMS project status – October 2022

green=active; yellow=spinning up; white=waiting; blue=ExCALIBUR-resourced

NG-UX (User Experience)

- Paul Phillips [George Pankiewicz]
- Develop and inaugural delivery of NGMS training material transitioning to BaU. This project will include aspects of usability

GungHo Atmosphere Science Project Ben Shipway [Nigel Wood] • Develop atmospheric science aspects & deliver model scientifically as good as UM	LFRic Infrastructure Development Steve Mullerworth [JC Rioual] • Deliver infrastructure to replace the UM scalable for future platforms	LFRic Inputs Paused to Jan-23 Rich Gilham [Glenn Greed] • Tools to ingest fixed & time-varying fields. • Include initial conditions, ancillary fields and LBCs	ExCALIBUR data workflow Stuart Whitehouse [Glenn Greed] • Development of research diagnostics and research workflow capabilities	NG-Marine Systems Mike Bell [Andy Saulter] • Deliver scalable marine systems including ocean, sea-ice & wave models
NG-Coupling	RAL3-LFRic	NG-PAO	GC5-LFRic	FAB Build System
JC Rioual [Ben Shipway] •OASIS3-MCT coupled components	Mike Bush [Huw Lewis] • NGMS-ready coupled atmos/ocean DA • JEDI as a DA framework	David Simonin [Chiara Piccolo] • JEDI as a DA framework • Processing of NWP observational data for NG-DA	 Maria Carvalho [Alistair Sellar] Global model evaluation Developing a coupled model as good as the UM equivalent 	Rich Gilham [Glenn Greed] • Development of new build systems for NGMS components
NG-R2O	NG-Composition	NG-Ver	NG-R2C	NG-Name
Mike Thurlow [David Walters] • Support transition of NGMS capability from research to NWP operations	Fiona O'Connor [Matt Hort] • Coordination of aerosol & chemistry development within NGMS	 Phil Gill [Oak Wells] Development of NWP verification capability for NGMS 	Camilla Mathison[Richard Wood] Support transition of capability from research to climate production	 Ben Devenish [Matt Hort] Development of dispersion models (e.g. NAME) for next generation computing
NG-Integration NG-Optimisation • Sam Adams [JC Rioual] • Chris Maynard [JC Rioual] • Provide a focus for IO development, cloud computing and integration • Optimisation of NGMS components with initial focus on LFRic				

www.metoffice.gov.uk

© Crown Copyright, Met Office

Met Office

A few highlights

- NG-Marine:
 - Work to get NEMO, SI3, NEMOVAR and WWIII to run on GPU machines
 - Experimental work to develop a code transformation tool for NEMO, SI3, NEMOVAR and WWIII so that PsyClone can be used to add directives (e.g. OpenACC, OpenMP).
 - No need for a code rewrite
 - Contact Andrew Porter <u>andrew.porter@stfc.ac.uk</u> for more information.
- Diagnostics:
 - Plan to use XIOS including regridding capability for diagnostics
 - Some concerns over performance when scaled up to a full weather model
 - Will require optimisation
- GC5-LFRic:
 - Developing a coupled model equivalent to our latest UM based coupled model (GC5) including all the same physics and the LFRic dynamical core.

- GPU port of ICON (using OpenACC) is completed for the computationally relevant parts of the model (excluding forward operators for data assimilation); port of ecRAD is at provisional stage
- Optimization efforts are still ongoing (most intensively at MeteoSwiss)
- Currently, energy efficiency for ICON-NWP is similar for NEC SX Aurora and Nvidia A100, but scaling is much better for the NEC
- More aggressive code refactoring is under investigation in various projects (e.g. EXCLAIM, WarmWorld)
- Recent scaling tests at DWD indicate that a configuration with global 3.25 km / 120 levels would be able to meet the operational time constraint (7.5 days in 50 min) on 75% of the current machine with NetCDF input, but GRIB2 input needs optimization (parallelization)

Energy efficiency GPU vs. NEC Aurora

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Energy per simulated day (Wh/day) ×32 128 Number of GPUs X 50 Number of Vector Engines X \times^{16} 64 more efficient × × × ×³² \mathbf{x}^{16} \times^4 × × x2 24 0 150 0 50 100 200 250 Time per simulated day (s/day)

faster

- : GPU work in progress
- : GPU not yet optimized for this experiment and machine

As reported by nvidia-smi (NVIDIA) and veda-smi (NEC)

Time loop only Excluding the CPU host GPU: out-of-the-box performance Vector Engine: optimized setup

Experiment setup:

- ~ DWD ensemble forecast
- Global R2B6
 ~ 328 000 cells (40 km)
- + Nested grid over Europe
 ~ 49 000 cells (20 km)
- Output disabled

Helmholtz solver (PCSI) for GRAPES-GFS

PGCR

Preconditioned Classical Stiefel Iteration (PCSI)

\mathbf{x}_0 , estimated eigenvalue boundary $[v, \mu]$	Maximum and minimum eigenvalues,
1, $\alpha = \frac{2}{\mu - \nu}$, $\beta = \frac{\mu + \nu}{\mu - \nu}$, $\gamma = \frac{\beta}{\alpha}$, $\omega_0 = \frac{2}{\gamma}$; $k = 0$;	priori information
2, $\mathbf{r}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$; $\mathbf{z}_0 = M^{-1}\mathbf{r}_0$; $\mathbf{x}_1 = \mathbf{x}_0 - \gamma^{-1}\mathbf{z}_0$; $\mathbf{r}_1 = \mathbf{b} - \mathbf{A}\mathbf{x}_0$	$\mathbf{x}_{1}; \ \mathbf{z}_{1} = M^{-1}\mathbf{r}_{1};$
3, while $k \le k_{\max} do$	
4, $k = k + 1$; $\omega_k = 1/(\gamma - \frac{1}{4\alpha^2}\omega_{k-1})$;	mv
5, $\Delta \mathbf{x}_{k} = \omega_{k} \mathbf{z}_{k-1} + (\gamma \omega_{k} - 1) \Delta \mathbf{x}_{k-1};$	
6, $\mathbf{x}_k = \mathbf{x}_{k-1} + \Delta \mathbf{x}_{k-1}$; $\mathbf{r}_k = \mathbf{b} - \mathbf{A}\mathbf{x}_k$;	tehalo and preconditioning
7, $update halo(\mathbf{r}_k); \mathbf{z}_k = M^{-1}\mathbf{r}_k;$	
8, if $k\%n_c == 0$ then check convergence;	lobal communication
9, end while	

PCSI avoids frequent calculation of communication-intensive inner products.
The convergence speed of PCSI reaches its theoretical optimum when the maximum and minimum eigenvalues are included in the algorithm to determine the recurrence coefficients.

Elapsed time of Tc1919L128 GSM (~5km, dynamical core only) on "Fugaku"

MPI decomp osition	Num. of nodes (MPI ranks, OpenMP threads)	Total Elapsed time[s]	Elapsed time for MPI communicati on [s]	Th the
Current	3841 (3841, 48)	1053	466~515	to
New	3841 (3841, 48)	733	280~408	

The new method approximately halved he elapse time for communication due o significant reduction of communication or SL advection.

Strong scaling of Tc1919L128 GSM (~5km, incl. physics) on "Fugaku"

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÕES INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS 10 year development programme

MONAN

Model for Ocean-laNd-Atmosphere predictioN

A new paradigm for advancing the Earth system numerical prediction in Brazil and Latin America

Saulo R. Freitas Scientific Committee for the Community Model MONAN Earth System Numerical Modeling Division- CGCT/INPE saulo.freitas@inpe.br

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÕES

The acronym MONAN

MONAN

Model for Ocean-laNd-Atmosphere predictioN

"Monan's representation is like something infinite. For the Tupi-Guarani-speaking nations, there is no notion of Christian <u>Paradise</u>, <u>heaven</u>, or <u>hell</u> as in Christian beliefs, but the "<u>Land without evils</u>" or Ybymarã-e'yma, the place where they live with their ancestors and gods, without war, famine, or any human ailments."

MONAN symbolizes the search for a better, sustainable, fraternal world with social justice.

And the community model contributes to the search for this world by generating more accurate information on the behavior and evolution of the components of planet Earth

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÕES

NOAA Unified Forecast System

- UFS components: Atmos (fv3 dycore), Land (Noah-MP), Ocean (MOM6), Ice (CICE6), Wave (WAVEWATCH III), Aerosol (GOCART), Air Quality (CMAQ), CMEPS mediator, CCPP physics
- UFS Applications:
 - Global: GFS (medium-range NWP), GEFS (ensemble), SFS (seasonal), UFS-aerosol
 - *Regional*: HAFS (hurricane), RRFS (regional NWP), Online-CMAQ (air quality)

Improvement for I/O and computational efficiency

- Parallel NetCDF with data compression applied to history files
- ESMF managed threading -- apply different threads for different UFS components
- Single and double precision dycore
- 32-bit physics (project just gets started)

HPC upgrade

Old: WCOSS, Dell, 73K x 2 cores, 4302 x2 TF peak performance New as of June 2022: WCOSS2, CRAY EX, 2560x2 nodes, 327Kx2 cores, 12,100 x2 TF peak performance.

÷

औ

 \approx

明

 $\mathbf{\Lambda}$

51 51 52

NATIONAL WEATHER SERVICE

Building a Weather-Ready Nation // 38

Compressed NetCDF for I/O and Inline Post-Processing ž A decision was made to write out GFS.v16 forecast history files (atmf and sfcf) in औ netCDF format with compression. Parallel I/O was developed with updated netCDF and HDF libraries. \aleph compression ratio: Atmf 3d (33.6 GB to 6.7 GB), lossy compression **5**x 2.5x (2.8 GB to 1.1 GB), lossless compression sfc 2d 明 Inline post-processing (post library) makes use of forecast data saved in memory for post processing, reduces I/O $\mathbf{\Lambda}$ activity, and speeds up the entire forecast system. Since lossy compression is applied for writing out forecast history files, *inline* 512

post generates more accurate products than the standalone offline post.

Ķ	WCOSS2 In Opera	ation Since June 2022
<i>र</i> औ	Locations • Manassas, VA • Phoenix, AZ	 Performance Requirements 99.9% Operational Use Time 99.0% On-time Product Generation 99.0% Development Use Time 99.0% System Availability
い い い い い い い い い い い い い い い い い い い	Configuration • Cray EX system • 12.1 PetaFlops • Multi-tiered storage • 2 flash filesystems each with • 614 TB usable storage • 300 GB/s bandwidth • 2 HDD filesystems each with • 12.5 PB usable storage • 200 GB/s bandwidth • Total aggregate - 26.2PB at 1TB/s • Lustre parallel filesystem • PBSpro workload manager • Ecflow scheduler	 Compute nodes 2,560 nodes (60 spare) 327,680 cores 128 cores/node 1.3 PB of memory 512 GB/node Pre/post-processing nodes 132 nodes (4 spare) 8,448 cores 64 cores/node 132 TB of memory 1TB/node 200Gb/s Slingshot interconnect
	NATIONAL WEATHER SERVICE	Building a Weather-Ready Nation // 40

HPC readiness: input from JMA

Numerical Prediction Division, Japan Meteorological Agency

Highlights

- Feasibility studies of future specification of NWP systems on Supercomputer "Fugaku"
 - GSM (Global Spectral Model) with Tc1919 (~5km grid-spacing)
 - Improvement of parallelization and saving memory enabled us to run 5km GSM.
 - Further speedup (e.g. single precision) is required for more feasible resources
- Research on GPU adaptation
 - GPU (OpenACC) porting for Global (GSM), regional (ASUCA) and ocean (MRI.COM) models are ongoing.
- Research on reduced precision
 - Single precision versions of
 - ASUCA: under development
 - GSM: under consideration

An example of Tl159 2x4 MPI decomposition

Current decomposition (two grid stages)

For parameterization, I/O and spectral transform 60N 60N 30 N 30N ΕO EQ 30S 30S 60\$ 60S Only halo communication for SL advection 120F Transpose (with all-to-all **MPI** communication) required every time step For SL advection (first to (Kmax/2)th vertical levels) ussi Ashabasa abasa asha basa abasa ab 60N · 30N -Π 2 3 5 6 4 MPI rank 30S -60S 気象庁 120W 120E KUROKI Yukihiro and YOSHIMURA Hiromasa

New decomposition (unified grid stage)

Another example of Tq959 MPI decomposition

Tq959L128 960mpi

- Pros.
 - Number of gridpoints / MPI rank is equalized as possible
 - Suitable for both derivative stencils in gridspace and spectral transform.
 - also preparation for gridspectral hybrid approach
- Cons.
 - Load-imbalance of computation in physics parameterizations gets worse (however, pros. overweigh in high-resolution runs)

Elapsed time of Tc1919L128 GSM (~5km, dynamical core only) on "Fugaku"

MPI decomp osition	Num. of nodes (MPI ranks, OpenMP threads)	Total Elapsed time[s]	Elapsed time for MPI communicati on [s]	Th the
Current	3841 (3841, 48)	1053	466~515	to
New	3841 (3841, 48)	733	280~408	

The new method approximately halved he elapse time for communication due o significant reduction of communication or SL advection.

Strong scaling of Tc1919L128 GSM (~5km, incl. physics) on "Fugaku"

Progress of GPU porting

- GSM (global model)
 - Moist physics has been ported to GPU.
 - A multi GPU approach can contribute to both speed up GPU computing and transferring data between CPU and GPU.
 - Spectral transform part is now under porting (planning to use cuBLAS).
- ASUCA (regional model)
 - Core of the dynamical process has been ported to GPU. now under porting for physics parameterizations
- MRI.COM (ocean model)
 - Porting bottlenecks in the dynamical process to GPU
- Common issues
 - Performance of GPU acceleration strongly depends on CPU <-> GPU transfer cost.
 - Refactoring required (array ordering, algorithms more suitable for GPU etc)
 - automated source-to-source code transformation tools are not used so far.

Test cases of TL319L128 (dx~55km, 640x320x128 gridpoints), 1 node 16MPI, 4 threads/MPI Tested on

Performance Optimization: Higher Order

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Performance Optimization: Higher Order

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

