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CMC: AI/ML 1n Data Assimilation

Input: Output:

* Assimilating radar data radar reflectivity Profiles of latent heating

in the 2.5km national

deterministic prediction ¥ ) Machine learning guess
system yields positive 2

results (Jacques et al.
2022)

_True latent heating profile

Latent heat nudging e § o —_—

o

involves applying

heating tendency L B =
profiles within the model "
|n reglons Of Observed e = ~0.0025 19;)[(23] 0.0025 0.0050 0.0075 0.0100
precipitation
* We hope to replace the current heuristic-based heating profiles with ML-based
profiles, trained from a large sample of modelled heating rates

* Promising results are obtained from a deep (50-layer) Residual Network (ResNet) model




CMC: AI/ML 1n Model Physics

=g I=—x=* * A project to replace the

s L-GCN ® mmm L-GCN T

=g | i ’ radiative transfer scheme with

;‘ an ML-based emulator is under
—T— .
Ll | way in the context of the

(b) Test MBE Canadian Earth System Model

Figure 3: Performance as a function of the main test set year (Fig.[2) and OOD test set (Fig.[3) for (Ca NESM ) .

our different baseline models. Metrics are in W/m? and shown as the average over the vertical and ..

over the up- and down-welling flux errors. The leftmost x-tick for the OOD plots corresponds to the * A benchmark dataset for traini ng
average metric of the main test years 2007-2014, for which the metrics are shown on a yearly basis in c . .-

Fig. 2 Generalization to pre-industrial and future pristine-sky conditions is a particularly challenging and evaluation of radiative transfer
lask‘ bccagsc .o‘f the changes in gas concentrations More structured models like a CNN or GraphNet emulators ( clim ART) has been

perform significantly better than an MLP.
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developed and shared with the
community (Cachay et al. 2022)

The climART benchmark is used to test multiple ML techniques for applicability under current,
historical and future climates under pristine and clear-sky conditions (to be extended to all-sky)
“Structured” models perform better under changing backgrounds than multilayer perceptron (MLP)
Speed-ups to >10x are observed, although fair comparison on GPUs is difficult




CMC: AI/ML in Post-Processing

e A new model output statistics (MOS)-type post-processing system is
under development at CMC

® The “modularity” design requirement will allow the current regression-
based prediction technique to be replaced with Al/ML in the future

e Planning to meet with Waves to Weather (T3) researchers (Rasp and Lerch
2018) to discuss deep neural network-based post-processing:
O Applicability of wind gust algorithm developed with KNMI to larger Canadian region

O Utility of Al for ensemble post-processing (higher order moments)
O Use of explainable Al to develop forecaster confidence in Al-based guidance
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DWD: AI/ML 1n Model Physics

Lagrangian particle model McSnow processes and variables

Processes Prognostic Variables

To generate (microphysical states) przesen
training data using the Lagrangian

particle model McSnow that secmenisten S
coalescence

ice mass m
vapor diffusion

explicitly resolves ice processes |
(Brdar and Seifert 2018) aggregation

Each McSnow particle has several variables that riming
describe its current microphysical state.

rime splintering
Needs at least 1000 particles per grid point, better e & ahoading
10000 to reduce Monte-Carlo noise. x

hydrodynamic breakup
These are expensive simulations that are even » e ROtRiaEs Hik
. . collision breakup
today hardly feasible in 3d.

rime mass m

Locuted & Hodls P&




ML for ice microphysics: Choice of bulk equations

We try to built an ODE system with 6 particle classes:

m /Ce monomers, Snow aggregates, rimed ice, rimed snow
graupel and rain (and cloud droplets).

All classes have mass and number densities, rimed classes (including graupel)
have in addition rime mass, rime volume and liquid mass.

Hence, for rimed particle classes with have rime fraction, rime density and
melted fraction as bulk properties (P3-like scheme).

This makes a total of 23 variables and more than 100 process rates.

Can we ,learn” all those bulk process rates from McSnow output and
come up with an ODE system that works reasonably well?




Training data for bulk ice microphysics:

We use an idealized box model falling through a prescribed atmosphere.

The idealized box model allows many simulations. This is preferred here
over a few 3d simulations.

Training data is generated by brute-force hypercube sampling of initial
condition and atmospheric profile resulting more than 10.000 simulation.

This can cover a large range of parameters.

It proved to be necessary to include updraft parcels in the training data to
better represent processes within the convective core.

Maybe another advantage of the idealized box model approach is that it

does not contain an imprint of the current climate, in contrast to more
realistic simulations.

Note: This is similar in spirit to the so-called ,bin-emulating schemes” used
in some cloud-resolving models (e.g. RAMS).




Simulation of an idealized squall line with ICON

Vertical cross section of hydrometeors:
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Simulation of an idealized squall line with ICON

e Radar reflectivity (Rayleigh approximation)

Height (km) Height (km) Height (km)

Height (km)

Xue et al. (2017): Observations and

three bin microphysics schemes

ML based 2mom
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ECMWEF: AI/ML 1n Data Assimilation

Learn how to combine operational models and machine learning

» During data-assimilation the model trajectory is “synchronised” with observations
* |tis possible to learn model error when comparing the model with (trustworthy) observations

Approach: Learn model error from a direct comparison of the model trajectory and
observations

Benefit: Correct for model error and understand model deficiencies

Question: What happens when the model is upgraded and the error pattern change?

a) NN Target b) NN prediction
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ECMWEF: AI/ML in Model Physics

gas mixing aerosol cloud
mixing ratios properties

Interpolate to radiation grid

-Learning to emulate radiative transfer scheme in the IFS.

Cloud optics

cloud optical
properties

*Offline errors small, O(10-2 K/d) & O(1 Wm-2) Interpolate to model grid

— Reduce computational cost.

— Leverage GPU nodes on HPC.

Machine learning

*Utilise bespoke physics-informed architecture.
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*Coupled forecasts neutral below 100hPa.
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*Ongoing work to utilise GPUs in coupled forecast. Change in temperature RMSE during JJA deterministic
forecasts at TC0399 versus existing radiation scheme.




ECWMF: AI/ML in Post-Processing

Ensemble post-processing using transformers
Collaboration with Microsoft

Utilise state-of-the-art machine learning architecture to coherently postprocess 2m-temperature IFS forecasts.
Solution ensures ensemble member fidelity while making state dependent adjustments to ensemble bias and spread.
Ensemble-size agnostic — training from hindcast (11-members), predictions with ENS (51-members).

Trained to optimise the CRPS.
Improves CRPS compared with member-by-member benchmark (or raw ensemble).
Improves spread-skill parity.

2m temperature 2m temperature

Continuous ranked probability score Spread and skill

20210101 00z to 20211231 12z 20210101 00z to 20211231 12z
Global Global

spread/skill ratio




ECWMF: AI/ML Application Competition

Outcome of the competition:
Challenge: Provide forecasts of near surface * 49 registered teams

temperature and precipitation for weeks 3+4 e 5 teams succeeded in prowdmg.better forecasts than the
Benchmark (ECMWF S2S operational forecasts)

forecasts for the year 2020.

RPSS Score — YEAR 2020
Hosted by Swiss Data Science Center at ETH Zirich, with a) 2-metre temperature
ECMWEF support through the new European Weather AN
Cloud for data access to S2S forecasts, the use Week3ta [ o &R
the CliMetLab software and the provision of virtual

machines to some participants from developing countries.
Week 5+6

Timeline: June-November 2021 -
b) Precipitation

UConn

All codes and forecasts are open source to foster
community learning on Al/ML methods for S2S

Week 3+4

30k Swiss Francs prize from WMO Week 5+6

) S &S2S YWARES WCRP.@’
@ SDSC <CECMWF




Hydrometcenter of Russia
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Hydrometcenter: AI/ML in Data Assimilation

LSEF: A Locally Stationary Ensemble Filter
In the LSEF analysis, the background-error covariance matrix is represented as

The sparse W matrix is estimated directly from the ensemble in a four-stage procedure:
(1) A multi-scale band-pass filter is applied to ensemble perturbations.

(2) In each pass band, sample variances (in the univariate 2D case) or sample covariance matrices (in the multivariate 3D case) are
computed.

(3) From sample band variances (which can be viewed as aggregated spatial spectra), so-called local spectra are restored at each grid
point. It is here where ML comes into play. Without ML, the new technique did outperform EnKF, 3D-Var, and EnVar with 2D synthetic
truth and observations, but the improvement was not large. With ML, the improvement became substantial.

(4) From the local spectra, a spatially varying convolution kernel is computed, from which W is built.

ML details: vanilla neural network (NN), 2 hidden layers (with 36 and 72 neurons), Adam optimizer. The learning sample was of the same

size for LSEF, 3D-Var (to learn the mean B matrix), and for EnKF (to learn the localization length).
Importantly, in our experiments, the NN needs to be trained only once, and then it can be applied to different ensemble sizes, different
spatial background-error covariances etc.

Ref.: M Tsyrulnikov and A Sotskiy. The ensemble Kalman filter reqularized with non-parametric non-stationary spatial convolutions (in
preparation).




Experimental setup: synthetic truth on the sphere,
synthetic randomly located observations with
observation noise st.dev. equal to FG error st.dev.

Static analyses. Verification against truth. 90%
bootstrap tolerance intervals (stripes). RMSE are
normalized (see the y-axis label)

6 schemes are compared:

Mean-B: 3D-Var with time-mean B matrix

: stochastic EnKF with tuned localization
Hybrid-B: EnVar with 50% B-mean and 50% EnKF

: the new analysis without ML

LSEF-B NN: the new analysis with ML (2-layer NN)
True-B: the optimal analysis (which has access to the
true B matrix)
Conclusion: ML (vanilla 2-layer NN) leads to
a major improvement in the analysis
accuracy
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INPE: AI/ML 1n Data Assimilation

https://doi.org/10.5194/gmd-2022-50
Preprint. Discussion started: 9 September 2022
(© Author(s) 2022. CC BY 4.0 License.
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Rio de Janeiro

Neural networks for data assimilation of surface and upper-air data
in Rio de Janeiro

Vinicius Albuquerque de Almeida', Haroldo Fraga de Campos Velho?, Gutemberg Borges Franga', and
Nelson Francisco Favilla Ebecken?

-
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!Laboratory for Applied Meteorology - Federal University of Rio de Janeiro
2National Institute for Space Research
*Civil Engineering/COPPE - Federal University of Rio de Janeiro

Correspondence: Vinicius Albuquerque de Almeida (vinicius @lma.ufrj.br)
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Figure 4. Temperature error map of (a) 3D-Var and neural networks - trained in (b) TensorFlow and (c) Weka - applied to 6-hour forecas
Figure 5. Mean temperature profile difference of 6-hour forecast (from a field without data assimilation). 6-hour forecast with 3D-Var and

ural networks - trained in TensorFlow and Weka - in relation to the observed profiles between Feb Ist and 8th, 2019 at SBGL.

fields in relation to the observed map on Feb 1st, 2019 12 UTC.




INPE: AI/ML in Post-Processing

@ Springer Link

Published: 27 May 2022
In-Flight Turbulence Forecast Model Based on Machine
Learning for the Santiago (Chile)-Mendoza (Argentina)

. o72°w o71°wWw 070°wW 069°wW 068°w
lr O u te Spatial distribution of the 1300 VRTG records above the FL100, from March 2018 to December 2019 in the study area, indicated according to their intensities.

[VRTG Class 1 (green), Class 2 (yellow), Class 3 (red). In black circles the airports of Santo Domingo (SCSN), Santiago (Arturo Merino Benitez International
Airport—SCEL) and Mendoza (Governor Francisco Gabrielli International Airport—SAME

Filipe Menegardo-Souza &, Gutemberg Borges Franca, Wallace Figueiredo Menezes & Vinicius

Albuquerque de Almeida

Pure and Applied Geophysics 179, 2591-2608 (2022) | Cite this article

75 Accesses | Metrics : L B
Logistic
MultilayerPerceptror
—e—Simple Logistic
—e—JRip
oz 3Z 6Z (Y4 12Z 15Z 18Z 21Z PART
OBSERVED | — — - totiangiee

—e—148

Index 5 Rzn:omFomsl
Unbalance Original Data (BayesNet) it
ClassBalancer 96/04 (RandomForest)

CostMatrix 380FN (RandomForest)

Random Removal “NO” (RandomForest)

Random Replication “YES” - mode 1 (RandomForest)
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https://link.springer.com/article/10.1007/s00024-022-03053-5/tables/10

INPE: AI/ML in Post-Processing

@ Springer Link

In this study, prediction models based
on machine learning were created with
the goal of detecting severe

Severe Convective Weather Forecast Using Machine convective events in the TMA-SP. The
Learning Models main findings are

Published: 30 June 2022

Jimmy Nogueira de Castro &, Gutemberg Borges Franca, Vinicius Albuquerque de Almeida & Valdonel

_ Atmospheric discharges occur more
Manoel de Almeida frequently in the summer and are
associated with UHI

Pure and Applied Geophysics 179, 2945-2955 (2022) | Cite this article

Result AD interval per event Model F-measure

- — : : ML models predict and classify the
i i severity (up to 5 h in advance),

RandomForest 0.84
BayesNet 0.82
BayesNet 0.78
BayesNet 0.78
RandomForest 0.71

X Hindcast show models do not currently

LMT 0.73

, e have a satisfactory performance in

AdaBoostM1 0.69

predicting convective events with frontal
Multilayer Perceptron 0.68 SE T: O ri g i n

JRip 0.52
BayesNet 0.40
BayesNet 0.34




INPE: AI/ML in Post-Processing

Convective systems forecast

wmu,n

Use of trained neural networks with data from Wy
analysis and model prediction to predict the
occurrence of strong convective activity. Tests
with eta model 20 km, 2 classes (strong, non- M

strong), 26 attributes g 4

WIK(314.2} Ho)

quu)

1H(325,1) H0(325,2)

W NH(325)

X
(2013-2015) use of neural networks trained
with data from analysis and model prediction
to predict the occurrence of convective Predicted Predicted Predicted Predicted
activity tests with eta model 20 km, nsca/sca — A > A 2
i NSCA training 506 44 498/520 30/52
classes, 48 hs prediction, averages and S SCA training 25 250 20/39 236/255

maximum/minimum of 20 runs... best result NSCA test 44 2 42/45 1/4
below! SCA test 21 0/4 1923

Training POD/FAR
Courtesy: Stephan Stephany 0.909/0.149 POD/FAR
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JMA: Overview of AI/ML Activities

e Familiarization with machine learning for model developers (extra slides)

— Use a multiscale Lorenz96 model as a toy system to emulate subgrid
parameterization with neural networks (NN)

* Emulate a non-orographic gravity wave (NGW) scheme by NN
— Recognize importance of domain scientist’s knowledge

* Momentum fluxes as predictors rather than tendencies of U and V winds for
momentum conservation in the emulated scheme.

* Choice of loss functions by considering the targeted region

— A “Learning by Python and Prediction by Fortran” approach makes implementation
of ML into NWP models easy (extra slides)

e Python: learn by ML package (e.g. PyTorch) and write weight coefficients to
external files.

* Fortran: load the files and calculate NN as matrix-matrix multiplication




JMA: AI/ML in Model Physics

U wind tendency from NGW and momentum conservation

oU 1 0Fy (8_0’) R
(E>NGW - _; 0z /p o NGWd
(. Fy(z=0) = Fy(2 = zt0p) = 0)

Convergence of momentum flux

Input (vertical 1D column)
U’ V" T’ P) Flaunch_level (a) MSE (Mean Square Es\r,or)

M
] LOSS[s] = ﬁz > (P — yam)
n=1m=1 /

L)
e .‘\' @ » 2 hidden layers with \
i g6 100072900 predictor  reference
> units/layer .
(b) Ap (pressure thickness) weighted MSE

Qutput (vertical column) 1~ (P —ynm)@

nm

(20) ) esEE =Y M
at NGW ) NGW %ﬂ——f‘éﬂ/
Larget weight over upper troposphere and

stratosphere

MATSUKAWA Chihiro




JMA: AI/ML in Model Physics

JJA zonal mean U-wind (contours) and its bias (colors) [m/s] against ERA-5 from
TL159L128 1-year simulation

Scinocca(2003) NGW Emulated
(reference) (tendencies)
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Meteo-France: Overview of AI/ML Activities

Calibration of ensemble prediction forecasts: Al-based post-
processing of meteorological parameters (e.g., wind gusts)

Innovative products based on kilometer-scale NWP system
|. Detection of weather objects (e.g., bow echo, TCs)

ll. Synthesis of EPS forecasts by coherent meteorological scenario
lIl. Detection of mesoscale convective system in nowcasting system.

Al-based generation of new EPS members for the kilometer-scale
NWP system

+ continuing to exglore the use of ML techniques for climate

model calibration (CNRM and IPSL).




Meétéo-France: AI/ML in Post-Processing
Al for weather object detection

Use of convolutional neural network to detect objects in AROME/AROME-EPS forecasts

> 17 kt
L Cyclonic wind (> 64 kt)
> s Maximum wind

5\/"\\{
@\/f>
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TC wind structure
:\ \ Y 0

)
" S/L‘L\~f\fw’§\i§j :

A NS —
72 69°W 6°W w 57 Hourly bow EChO in AROME'EPS
30 June 2022

+ other promising tests for the dectection of supercells and weather fronts Mounier et al. (2022, AIES



https://journals.ametsoc.org/view/journals/aies/1/2/AIES-D-21-0010.1.xml

Metéo-France: AI/ML for weather forecast generation

Design a hybrid EPS combining ‘true’ forecasts and Al-generated forecasts

Use of Generative Adversarial Networks (GAN) to generate AROME-like forecasts
Zonal wind mean power spectrum

Spectral Power Density dynamics , u AROME-EPS MEAN

AROME-EPS Q10-90
1 iteration

s 9001 iterations

18001 iterations
60000 iterations

—— Step 1/60000

Step 9001/60000
—— Step 18001/60000
—— Step 60000/60000
—— Mean PEARO Spectrum
---- Q10-90 PEARO
---- Q10-90 PEARO
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Promising realistic GAN-generated atmospheric states

GAN forecasts PhD C. Brochet, with ideas from Besombes et al. 2021, NPG)



https://npg.copernicus.org/articles/28/347/2021/npg-28-347-2021.html
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MetOffice: Overview of AI/ML Activities

Data Science at the Met Office

e Key theme of the Met Office research and innovation
strategy

e Training to develop skills of more staff
o Provided by informatics lab.
o At a team level developing examples relevant to current work.

e Working with partners (e.g. Microsoft)

e Four Capability areas:
o Discovery and Attribution
o Fusing Simulation with data science

o Uncertainty and decisions
o Data to decisions




MetOffice: AI/ML in Downscaling

Moonshot Project: Data-Driven NWP with UK focus

2500 RMSE (m?s2
~
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T850 RMSE (K)
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Predict A0 £ ™ £ sl
(GNN, CNN, ¢ / g
FNO,... ?)

»
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o'=[p, 6, u, v, q, etc.]
Initial, low-resolution tests show skill against
persistence
Y

u10, V10
PPN

UKV Truth Coarse Input Linear Regression (RMSE: 0.322 K)

Global forecast model + UK regional downscaler
Forecast model trained on ERAS reanalysis data
Ongoing trials using Graph Neural Nets (GNN),

Convolutional Neural Nets (CNN), and novel methods. : :
Simple, localised models work well for

orographic corrections. Generative models
needed for convective processes.




MetOffice: AI/ML in Reanalysis

ML based reanalysis over China

VAE trained on
ML model of monthly climate state: ERAS 1959-2021
MSLP, Precip, T2M, & SST anomalies at
0.25 degrees resolution.

Model trained to represent multivariate Latent-space M L
climate state as a 100-dimensional latent-

space (LS) vector. ML model is a Deep vector Mode
Convolutional Variational AutoEncoder, (X1 Koy .y X1 00) I
trained on ERAS.

ML model is bidirectional — can estimate
LS vector for a month from an arbitrary
subset of real climate state, and then
recover full climate state from LS vector.
=> Data Assimilation: recover full state
from sparse observations.

Application to reanalysis, observations

sensitivity experiments, climate sensitivity 0

experiments and extension to impacts Phlllp BrOhan
variables.




MetOffice: AI/ML in Model Physics

e ML radiation parameterisation radiation trained on line by line
code.
o Currently a bit more expensive than existing radiation scheme
o But based on line by line code so potentially more accurate
o Will it be faster when running on GPU based systems?

e Non-Orographic gravity wave drag scheme
o Produces similar results to the model parameterisation
o On current CPU systems is slightly slower
o Will it be faster or easier to port to GPUs?




MetOffice: AI/ML in Post-Processing

e Precipitation from model columns
o Using NWP output from global model ensemble columns
o Trained on radar data data.

o Aim to provide better predictions of precipitation (probability of rainfall
within different classes) than the raw model output.

e Downscaling climate data (wind) to energy security
decisions.
o Testing Autoencoder and Long Short-Term Memory (LSTM) methods

o LSTM performs best and shows improvement over linear
interpolation.







NCEP: Overview of AI/ML Activities

Observations

Radiosonde processing

Data Assimilation

Physics emulation

Air Quality Forecast:
Accelerated Transport

Post/Product

Wave feature
identification (Wave-
Watch-lll)

Satellite Thinning

Improved Background

Atmospheric Chemistry
Emulator

Rip Currents

Background Error
Covariances

Physics Suite Emulation

Air Quality Bias
Correction

Use analysis increments
to diagnose and correct
model biases

Radiation
Parameterizations

Sub-Seasonal/ Seasonal
forecast products

GL Wave Emulation




NCEP: AI/ML in Model Dynamics

Al Emulator for Accelerated Transport of Chemical Species

Evaluate the use of Al-based emulators for accelerated transport of atmospheric tracers:
chemical species and aerosols.

Before next physics TS

Remapped to Output
Input: 3D tracer concentrations for regular grid/ Data

transported species, pressure,

temperature, wind, humidity, grid f Remapped to
information (lat/lon/height,date,time lar grid . i
( ° ) Transport of Dl Physics ]

Output: 3D tracer concentrations for Tracers [ Al Emulation of ] 1
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and periods (Tp1-Tp4).
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**++ EXPERIMENTAL - NOT FOR OPERATIONAL USE ***

ing

Using k-means clustering to identify spatially and temporally consistent wave systems

from the output of Nearshore Wave Prediction System v1.3
Hsl
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k-means cluster

(Van der Westhuysen, 2020)
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Machine Learning of Atmospheric Boundary Layer Turbulence
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Q: Can we use machine learning of large-eddy Neutral ABL (LES, Ax = Az = 10 m)

simulation (LES) of the boundary layer to 1900
improve our ability to parameterize turbulence 1000
in numerical weather prediction (NWP)? >
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Data assimilation
e CMC, DWD, ECMWF, INPE, NCEP, HydroMet of Russia

Model Physics

e Radiative Transfer (CMC, ECMWEF, Met Office, NCEP)
lce Microphysics (DWD)
Non-Orographic gravity Wave Drag (JMA, Met Office)
Boundary Layer Turbulence (NRL)
Model calibration (Météo-France)

Model Dynamics
e Accelerated tracer transport (NCEP)




Emulation
e Generation of reanalysis without model (Met Office)
e ML based forecast systems (Met Office, NCEP)
e S2S forecast competition (ECMWEF)

Post-processing

Temperature postprocessing (ECMWEF, Met Office)
Flight turbulence (INPE)

Convective Weather (INPE)

Precipitation prediction (Met Office)
Downscaling climate model data (Met Office)
Wave Systems (NCEP)

RIP currents (NCEP)

Air quality bias correction (NCEP)

Ensemble products ( Météo-France)
Weather object detection (Météo-France)
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