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CMC: AI/ML in Data Assimilation

• We hope to replace the current heuristic-based heating profiles with ML-based 
profiles, trained from a large sample of modelled heating rates

• Promising results are obtained from a deep (50-layer) Residual Network (ResNet) model

• Assimilating radar data 
in the 2.5km national 
deterministic prediction 
system yields positive 
results (Jacques et al. 
2022)

• Latent heat nudging 
involves applying 
heating tendency 
profiles within the model 
in regions of observed 
precipitation



CMC:  AI/ML in Model Physics
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• A project to replace the 
radiative transfer scheme with 
an ML-based emulator is under 
way in the context of the 
Canadian Earth System Model 
(CanESM).

• A benchmark dataset for training 
and evaluation of radiative transfer 
emulators (climART) has been 
developed and shared with the 
community (Cachay et al. 2022)

• The climART benchmark is used to test multiple ML techniques for applicability under current, 
historical and future climates under pristine and clear-sky conditions (to be extended to all-sky)

• “Structured” models perform better under changing backgrounds than multilayer perceptron (MLP)
• Speed-ups to >10x are observed, although fair comparison on GPUs is difficult



CMC: AI/ML in Post-Processing 

●A new model output statistics (MOS)-type post-processing system is 
under development at CMC
●The “modularity” design requirement will allow the current regression-

based prediction technique to be replaced with AI/ML in the future
●Planning to meet with Waves to Weather (T3) researchers (Rasp and Lerch 

2018) to discuss deep neural network-based post-processing:
○ Applicability of wind gust algorithm developed with KNMI to larger Canadian region
○ Utility of AI for ensemble post-processing (higher order moments)
○ Use of explainable AI to develop forecaster confidence in AI-based guidance



DWD

Günther Zangl



Lagrangian particle model

● To generate (microphysical states) 
training data using the Lagrangian 
particle model McSnow that 
explicitly resolves ice processes
(Brdar and Seifert 2018)

● Each McSnow particle has several variables that 
describe its current microphysical state.

● Needs at least 1000 particles per grid point, better 
10000 to reduce Monte-Carlo noise.

● These are expensive simulations that are even 
today hardly feasible in 3d.
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McSnow processes and variables

DWD:  AI/ML in Model Physics



ML for ice microphysics: Choice of bulk equations

● We try to built an ODE system with 6 particle classes:
■ ice monomers, snow aggregates, rimed ice, rimed snow

graupel and rain (and cloud droplets).
● All classes have mass and number densities, rimed classes (including graupel) 

have in addition rime mass, rime volume and liquid mass.
● Hence, for rimed particle classes with have rime fraction, rime density and 

melted fraction as bulk properties (P3-like scheme).
● This makes a total of 23 variables and more than 100 process rates.

● Can we „learn“ all those bulk process rates from McSnow output and 
come up with an ODE system that works reasonably well?
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Training data for bulk ice microphysics:

● We use an idealized box model falling through a prescribed atmosphere.
● The idealized box model allows many simulations. This is preferred here 

over a few 3d simulations.
● Training data is generated by brute-force hypercube sampling of initial 

condition and atmospheric profile resulting more than 10.000 simulation.  
● This can cover a large range of parameters.
● It proved to be necessary to include updraft parcels in the training data to 

better represent processes within the convective core.
● Maybe another advantage of the idealized box model approach is that it 

does not contain an imprint of the current climate, in contrast to more 
realistic simulations.

● Note: This is similar in spirit to the so-called „bin-emulating schemes“ used 
in some cloud-resolving models (e.g. RAMS).
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Simulation of an idealized squall line with ICON

Vertical cross section of hydrometeors: 
ML-based vs classic two-moment  
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Simulation of an idealized squall line with ICON

● Radar reflectivity (Rayleigh approximation)
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dBZ dBZ

ML-based 2mom                   classic 
2mom

Lack of stratiform region
(common for bulk schemes)

Extended stratiform region 
with secondary maximum

Xue et al. (2017): Observations and
three bin microphysics schemes
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• During data-assimilation the model trajectory is “synchronised” with observations 
• It is possible to learn model error when comparing the model with (trustworthy) observations
Approach: Learn model error from a direct comparison of the model trajectory and 
observations
Benefit: Correct for model error and understand model deficiencies
Question: What happens when the model is upgraded and the error pattern change?

Learn how to combine operational models and machine learning

Laloyaux, Kurth, Dueben, Hall JAMES 2022

ECMWF: AI/ML in Data Assimilation



October 29, 2014

Machine learning for parametrised physics

•Learning to emulate radiative transfer scheme in the IFS.
– Reduce computational cost.

– Leverage GPU nodes on HPC.

•Utilise bespoke physics-informed architecture.

•Offline errors small, O(10-2 K/d) & O(1 Wm-2)

•Coupled forecasts neutral below 100hPa.

•Ongoing work to utilise GPUs in coupled forecast.
15

M
ac

hi
ne

 le
ar

ni
ng

Change in temperature RMSE during JJA deterministic 
forecasts at TCo399 versus existing radiation scheme.

ECMWF:  AI/ML in Model Physics



October 29, 2014

Ensemble post-processing using transformers
Collaboration with Microsoft

Utilise state-of-the-art machine learning architecture to coherently postprocess 2m-temperature IFS forecasts.

– Solution ensures ensemble member fidelity while making state dependent adjustments to ensemble bias and spread.

– Ensemble-size agnostic – training from hindcast (11-members), predictions with ENS (51-members).

– Trained to optimise the CRPS.

Improves CRPS compared with member-by-member benchmark (or raw ensemble).

Improves spread-skill parity.
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ECWMF:  AI/ML in Post-Processing 



October 29, 2014

The WMO S2S AI/ML Challenge
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Challenge: Provide forecasts of near surface 
temperature and precipitation for weeks 3+4 
and 5+6 more skilful than ECMWF operational 
forecasts for the year 2020.

• Hosted by Swiss Data Science Center at ETH Zürich, with 
ECMWF support through the new European Weather 
Cloud for data access to S2S forecasts, the use 
the CliMetLab software and the provision of virtual 
machines to some participants from developing countries.

• Timeline: June-November 2021

• All codes and forecasts are open source to foster 
community learning on AI/ML methods for S2S

• 30k Swiss Francs prize from WMO

Outcome of the competition:
• 49 registered teams
• 5 teams succeeded in providing better forecasts than the 

Benchmark (ECMWF S2S operational forecasts)
• Top 3 teams got rewarded a prize.

ECWMF:  AI/ML Application Competition 



Hydrometcenter of Russia

Michael Tsyrulnikov



LSEF: A Locally Stationary Ensemble Filter
In the LSEF analysis, the background-error covariance matrix is represented as 

The sparse W matrix is estimated directly from the ensemble in a four-stage procedure:
(1) A multi-scale band-pass filter is applied to ensemble perturbations.
(2) In each pass band, sample variances (in the univariate 2D case) or sample covariance matrices (in the multivariate 3D case) are 

computed.
(3) From sample band variances (which can be viewed as aggregated spatial spectra), so-called local spectra are restored at each grid 

point. It is here where ML comes into play. Without ML, the new technique did outperform EnKF, 3D-Var, and EnVar with 2D synthetic 
truth and observations, but the improvement was not large. With ML, the improvement became substantial.

(4) From the local spectra, a spatially varying convolution kernel is computed, from which W is built.
ML details: vanilla neural network (NN), 2 hidden layers (with 36 and 72 neurons), Adam optimizer. The learning sample was of the same 
size for LSEF, 3D-Var (to learn the mean B matrix), and for EnKF (to learn the localization length). 
Importantly, in our experiments, the NN needs to be trained only once, and then it can be applied to different ensemble sizes, different 
spatial background-error covariances etc.

Ref.: M Tsyrulnikov and A Sotskiy. The ensemble Kalman filter regularized with non-parametric non-stationary spatial convolutions (in 
preparation).

Hydrometcenter:  AI/ML in Data Assimilation



Experimental setup: synthetic truth on the sphere, 
synthetic randomly located observations with 
observation noise st.dev. equal to FG error st.dev.
Static analyses. Verification against truth. 90% 
bootstrap tolerance intervals (stripes). RMSE are 
normalized (see the y-axis label)

6 schemes are compared:

Mean-B: 3D-Var with time-mean B matrix

EnKF-B: stochastic EnKF with tuned localization
Hybrid-B: EnVar with 50% B-mean and 50% EnKF

LSEF-B no NN: the new analysis without ML
LSEF-B NN: the new analysis with ML (2-layer NN)
True-B: the optimal analysis (which has access to the 
true B matrix)

Conclusion: ML (vanilla 2-layer NN) leads to 
a major improvement in the analysis 
accuracy
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INPE:  AI/ML in Data Assimilation



Results of optimal forecast MOG turbulence models for September 
28th, 2018 compared to observed data. In gray absence of turbulence, 
in red presence

https://link.springer.com/article/10.1007/s00024-022-03053-5/tables/10

INPE:  AI/ML in Post-Processing

https://link.springer.com/article/10.1007/s00024-022-03053-5/tables/10


In this study, prediction models based 
on machine learning were created with 
the goal of detecting severe 
convective events in the TMA-SP. The 
main findings are

Atmospheric discharges occur more 
frequently in the summer and are 
associated with UHI

ML models predict and classify the 
severity (up to 5 h in advance), 

Hindcast show models do not currently 
have a satisfactory performance in 
predicting convective events with frontal 
origin

INPE:  AI/ML in Post-Processing



Convective systems forecast

Use of trained neural networks with data from 
analysis and model prediction to predict the 
occurrence of strong convective activity. Tests 
with eta model 20 km, 2 classes (strong, non-
strong), 26 attributes

Courtesy: Stephan Stephany

INPE:  AI/ML in Post-Processing

Training POD/FAR
0.909/0.149
Tests POD/FAR
0.913/0.087

(2013-2015) use of neural networks trained 
with data from analysis and model prediction 
to predict the occurrence of convective 
activity tests with eta model 20 km, nsca/sca 
classes, 48 hs prediction, averages and 
maximum/minimum of 20 runs… best result 
below!
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• Familiarization with machine learning for model developers (extra slides)
– Use a multiscale Lorenz96 model as a toy system to emulate subgrid 

parameterization with neural networks (NN)
• Emulate a non-orographic gravity wave (NGW) scheme by NN

– Recognize importance of domain scientist’s knowledge
• Momentum fluxes as predictors rather than tendencies of U and V winds for 

momentum conservation in the emulated scheme.
• Choice of loss functions by considering the targeted region 

– A “Learning by Python and Prediction by Fortran” approach makes implementation 
of ML into NWP models easy (extra slides)

• Python:  learn by ML package (e.g. PyTorch) and write weight coefficients to 
external files. 

• Fortran: load the files and calculate NN as matrix-matrix multiplication 

JMA:  Overview of AI/ML Activities
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Input (vertical 1D column) 

Output (vertical 1D column) 

or 

Loss 
functions(a) MSE (Mean Square Error)

U wind tendency from NGW and momentum conservation 

Larger weight over upper troposphere and 
stratosphere

MATSUKAWA Chihiro

2 hidden layers with 
1000～2000 
units/layer

Convergence of momentum flux

referencepredictor

JMA:  AI/ML in Model Physics
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Emulated 
(tendencies)

No NGW Scinocca(2003) NGW 
(reference)

JJA zonal mean U-wind (contours) and its bias (colors) [m/s] against ERA-5 from 
TL159L128 1-year simulation 

The emulated  NGW scheme represents the characteristics of the true 
NGW scheme qualitatively.

JMA:  AI/ML in Model Physics



Met France

Romain Roehrig



� Calibration of ensemble prediction forecasts: AI-based post-
processing of meteorological parameters (e.g., wind gusts)

� Innovative products based on kilometer-scale NWP system
i. Detection of weather objects (e.g., bow echo, TCs)
ii. Synthesis of EPS forecasts by coherent meteorological scenario
iii. Detection of mesoscale convective system in nowcasting system.

� AI-based generation of new EPS members for the kilometer-scale 
NWP system

� + continuing to explore the use of ML techniques for climate 
model calibration (CNRM and IPSL). 

Météo-France: Overview of AI/ML Activities



AI for weather object detection
Use of convolutional neural network to detect objects in AROME/AROME-EPS forecasts

Hourly bow echo in AROME-EPS 
30 June 2022

TC wind structure

> 17 kt
Cyclonic wind (> 64 kt)
Maximum wind

+ other promising tests for the dectection of supercells and weather fronts Mounier et al. (2022, AIES)

Météo-France: AI/ML in Post-Processing

https://journals.ametsoc.org/view/journals/aies/1/2/AIES-D-21-0010.1.xml


Météo-France: AI/ML  for weather forecast generation

Design a hybrid EPS combining ‘true’ forecasts and AI-generated forecasts
� Use of Generative Adversarial Networks (GAN) to generate AROME-like forecasts

PhD C. Brochet, with ideas from Besombes et al. 2021, NPG)

AROME-EPS MEAN
AROME-EPS Q10-90
1 iteration

9001 iterations

18001 iterations
60000 iterations

Zonal wind mean power spectrum

� Promising realistic GAN-generated atmospheric states 

https://npg.copernicus.org/articles/28/347/2021/npg-28-347-2021.html


Met Office

Tim Graham, Philip Brohan, Tom Dunstan



●Key theme of the Met Office research and innovation 
strategy 
●Training to develop skills of more staff
○Provided by informatics lab.
○At a team level developing examples relevant to current work.

●Working with partners (e.g. Microsoft)
●Four Capability areas:
○Discovery and Attribution
○Fusing Simulation with data science
○Uncertainty and decisions
○Data to decisions

Data Science at the Met Office

MetOffice:  Overview of AI/ML Activities



Predict ΔΦ
(GNN, CNN, 
FNO,… ?)

Φt = [ρ, θ, u, v, q, etc.] Φt+1 = Φt + ΔΦ

T2M
U10, V10
PPN

Downscaler

• Global forecast model + UK regional downscaler
• Forecast model trained on ERA5 reanalysis data
• Ongoing trials using Graph Neural Nets (GNN), 

Convolutional Neural Nets (CNN), and novel methods.

Initial, low-resolution tests show skill against 
persistence

Simple, localised models work well for 
orographic corrections. Generative models 
needed for convective processes.

MetOffice:  AI/ML in Downscaling

Moonshot Project: Data-Driven NWP with UK focus
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Mode
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VAE trained on 
ERA5 1959-2021

Latent-space 
vector

(x1,x2,…,x100)

ML model of monthly climate state: 
MSLP, Precip, T2M, & SST anomalies at 
0.25 degrees resolution.

Model trained to represent multivariate 
climate state as a 100-dimensional latent-
space (LS) vector. ML model is a Deep 
Convolutional Variational AutoEncoder, 
trained on ERA5.

ML model is bidirectional – can estimate 
LS vector for a month from an arbitrary 
subset of real climate state, and then 
recover full climate state from LS vector. 
=> Data Assimilation: recover full state 
from sparse observations.

Application to reanalysis, observations 
sensitivity experiments, climate sensitivity 
experiments and extension to impacts 
variables.

ML based reanalysis over China

Philip Brohan

MetOffice:  AI/ML in Reanalysis



●ML radiation parameterisation radiation trained on line by line 
code.
○Currently a bit more expensive than existing radiation scheme
○But based on line by line code so potentially more accurate
○Will it be faster when running on GPU based systems?

●Non-Orographic gravity wave drag scheme
○Produces similar results to the model parameterisation
○On current CPU systems is slightly slower
○Will it be faster or easier to port to GPUs?

MetOffice:  AI/ML in Model Physics



MetOffice:  AI/ML in Post-Processing

●Precipitation from model columns
○Using NWP output from global model ensemble columns
○Trained on radar data data.
○Aim to provide better predictions of precipitation (probability of rainfall 

within different classes) than the raw model output.

●Downscaling climate data (wind) to energy security 
decisions.
○Testing Autoencoder and Long Short-Term Memory (LSTM) methods
○ LSTM performs best and shows improvement over linear 

interpolation.



NCEP

Fanglin Yang



Observations Data Assimilation Forecast Post/Product

Radiosonde processing Physics emulation Air Quality Forecast:  
Accelerated Transport

Wave feature 
identification (Wave-
Watch-III)

Satellite Thinning Improved Background Atmospheric Chemistry 
Emulator

Rip Currents

Background Error 
Covariances

Physics Suite Emulation Air Quality Bias 
Correction

Use analysis increments 
to diagnose and correct  
model biases

Radiation 
Parameterizations

Sub-Seasonal/ Seasonal 
forecast products

GL Wave Emulation

NCEP:  Overview of AI/ML Activities



NCEP:  AI/ML in Model Dynamics 

Evaluate the use of Al-based emulators for accelerated transport of atmospheric tracers: 
chemical species and aerosols.

45

AI Emulator for Accelerated Transport of Chemical Species

Output
Data

AI Emulation of 
Tracer Transport

Transport of 
Tracers

Physics

Remapped to 
regular grid

Chemistry

Input
Data

Remapped to 
regular grid

Before next physics TS
Input: 3D tracer concentrations for 
transported species, pressure, 
temperature, wind, humidity, grid 
information (lat/lon/height,date,time)  

Output: 3D tracer concentrations for 
transported species, grid 
information(lat/lon/height, date,time)

Format: netcdf 

Geographic coverage: CONUS

Sleeman et al
Learning Mode Prediction Mode



NCEP:  AI/ML in Post-Processing

Wave System Identification Using Clustering

47

Clustered wave systems in geo space with 
heights (Hs1-Hs4) and periods (Tp1-Tp4).

(Van der Westhuysen, 2020)

k-means clustering in 
wave parameter space

Using k-means clustering to identify spatially and temporally consistent wave systems 
from the output of Nearshore Wave Prediction System v1.3



NRL
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Machine Learning of Atmospheric Boundary Layer Turbulence

Distribution Statement A. Approved for public release. Distribution is unlimited

LES fields over 1 hr; dry, 
convective boundary layer

NWP & LES matching 
well in the surface layer & 
above the boundary layer

Q: Can we use machine learning of large-eddy 
simulation (LES) of the boundary layer to 
improve our ability to parameterize turbulence 
in numerical weather prediction (NWP)?
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COAMPS® is a registered trademark of the U.S. Naval Research Laboratory

LES fields

NWP fields

NWP (COAMPS)
LES

David Flagg1, Jeffrey Byers1, Katarina Doctor1, James Doyle1, Hao Jin1, Saša Gaberšek1
1U.S. Naval Research Laboratory

Contact: 
david.flagg@nrlmry.navy.
mil

Large discrepancy in  the 
entrainment zone



Summary



Data assimilation
● CMC, DWD, ECMWF, INPE, NCEP, HydroMet of Russia

Model Physics
● Radiative Transfer (CMC, ECMWF, Met Office, NCEP)
● Ice Microphysics (DWD)
● Non-Orographic gravity Wave Drag (JMA, Met Office)
● Boundary Layer Turbulence (NRL)
● Model calibration (Météo-France)

Model Dynamics
● Accelerated tracer transport (NCEP)



Emulation
● Generation of reanalysis without model (Met Office)
● ML based forecast systems (Met Office, NCEP)
● S2S forecast competition (ECMWF)

Post-processing
● Temperature postprocessing (ECMWF, Met Office)
● Flight turbulence (INPE)
● Convective Weather (INPE)
● Precipitation prediction (Met Office)
● Downscaling climate model data (Met Office)
● Wave Systems (NCEP)
● RIP currents (NCEP)
● Air quality bias correction (NCEP)
● Ensemble products ( Météo-France)
● Weather object detection (Météo-France)



Thank You


