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Talk outline:
• Precipitation data-sets + spatial verification methods
• Scale Separation diagnostics

o Energy Normalized Bias
o Skill on separate scales
o Symmetric and Bounded Efficiency

• Conclusions
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Data
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24h accumulated 
precipitation fields.

COSMO-REA6: high 
resolution (6km) regional 
reanalysis (Bollmeyer et 
al, 2015, QJRMS)

ECMWF-ERA5 reanalysis:
• High resolution (31km) 

control (EA-HRES)
• 10 member ensemble 

(EA-EDA) with reduced 
resolution

Results aggregated on 50 
cases of intense precip in 
2010-2014.

COSMO-REA6 Control EA-HRES

Ensemble mean 
(EA-EDA-mean)

Ensemble spread 
(90th – 10th %tile)

Case study 2011-08-29



Spatial verification methods
• Account for coherent spatial structure and the presence of features 
• Aim to provide information on error in physical terms (meaningful verification): e.g.  

assess scale structure and displacement error (separately from intensity error) 
• Account for small time-space uncertainties (avoid double-penalty issue) 

Spatial method inter-comparisons:
• Spatial Verification Inter-Comparison 

Project (ICP): Gilleland et al (2010), 
BAMS 

• Mesoscale Verification Intercomparison 
in complex Terrain (MesoVICT): 
Dorninger et al (2018), BAMS

http://www.ral.ucar.edu/projects/icp includes 
an list of more than 200 peer-review articles 

Open source community verification tools: R
spatialVx package, MET and METplus

http://www.ral.ucar.edu/projects/icp


Scale Separation Diagnostics

from Jung and Leutbecher (2008)

è Assess scale structure
è Bias, error and skill on different scales
è Scale dependency of forecast predictability (no-skill to 

skill transition scale)

Rationale: weather phenomena of different spatial scales 
are governed by different physical processes. 

ERA5 and COSMO-REA6 precipitation fields (Z ) are decomposed 
into the sum of components on different spatial scales (j=1	…	J	) by 
using a 2D Haar discrete wavelet transform:

𝑍 = Σ()*
+ 𝑍( + 𝑍̅

1. Decompose forecast and observation fields into spatial 
scale components (filters: wavelets, Fourier, DCT, … )
2. Perform verification on the different scale components, 
separately (continuous, categorical, probabilistic scores)



Assessment of the (energy) bias on separate scales (1/2)

• The energy is proportional to 
magnitude and number of 
features on each scale

• Comparison of energy informs 
on bias on different scales (and 
scale structure)

• Wavelet components have zero 
mean 𝜇!" = 0; their energy is 
the field standard deviation 
𝐸𝑛 𝑍" = 𝜎!"; energy for the 
largest scales is the field spatial 
average 𝜇!

𝐸𝑛! 𝑍" = 𝑍"
! dominant features at 

200-400 km scales

Small scale energy 
COSMO >> Control > Ensemble



• Energy Normalized Bias (NBEn): 

for the largest scale

• Why normalizing? Additive bias would 
be small for small energies, even if 
their relative difference (e.g. as 
assessed by the ratio) could be large. 

• Bounded: range [-1,1]; Symmetric
(these are key properties for defining 
the Symmetric and Bounded 
Efficiency).

Assessment of the (energy) bias on separate scales (2/2)

𝑁𝐵# =
𝜎$" − 𝜎%"
𝜎$" + 𝜎%"

𝑁𝐵& =
𝜇$ − 𝜇%
𝜇$ + 𝜇%



Bias2

Measures of error and association

Covariance

Correlation 
separates HRES 
from EDA

Variability

𝑀𝑆𝐸 𝑌, 𝑋 = 𝑌 − 𝑋 , = 𝜇- − 𝜇. , + 𝜎-, + 𝜎., − 2𝜎-𝜎.𝑟-,.

MSE does 
not separate 
HRES from EDA



Assessment of the skill on separate scales (1/2)

𝑀𝑆𝐸 −𝑀𝑆𝐸#$%&
𝑀𝑆𝐸'()* −𝑀𝑆𝐸#$%&

= 1 −
𝑀𝑆𝐸
𝜎+,

Skill: evaluate the performance 
against a reference (benchmark) 
forecast

e.g. Reduction of Variance

Use as reference forecast the 
sample climatology 𝜇%.

Also known as Nash-Sutcliffe 
Efficiency (1970) J. of Hydrology

as the MSE, NSE is 
not capable of fully 

separating HRES 
from EDA



𝑆𝑆𝑆𝑆𝑗 = 1 −
𝑀𝑆𝐸𝑗

𝜎$"! + 𝜎%"!

Assessment of skill on separate scales (2/2)

𝑆𝑆𝑆𝑆𝑗 =
2𝜎$"𝜎%"𝑟$",%"
𝜎$"! + 𝜎%"!

The Scale Separation Skill Score (SSSS) 
consider random chance* as reference 
forecast

Normalize with the sum of both obs and 
forecast variability

Is negative if forecast and obs are 
decorrelated

SSSS is capable of 
separating HRES 
from EDA

000
* Proof: 𝑀𝑆𝐸()*+,- 𝑌", 𝑋" = 𝜇$" − 𝜇%"

!
+ 𝜎$"! + 𝜎%"! − 2𝜎$"𝜎%"𝑟$",%"



MSE, corr and Skill: summary of the key messages

• MSE depends on variability of both obs and forecast: historically, the MSE tends overly 
penalize high resolution products wrt coarser/smoother ones.

• NSE normalizes by the obs stdev only: forecasts with higher variability are still penalized! 
• SSSS, on the other hand, normalizes by both variabilities, giving high resolution forecasts a 

chance! SSSS enables a fairer comparison of products with different resolutions, and the 
assessment of the added value of increasing resolution.

Ø NSE is not capable of separating HRES from EDA, whereas SSSS does (correlation does 
too, but less remarkably): SSSS factors in the differences/similarities in variability

• SSSS sign = correlation sign: can be negative if forecast and obs anticorrelate (less likely for 
re-analyses than for forecasts, e.g. on small scales and long lead times).

• NSE is not symmetric, whereas SSSS is symmetric (invariant wrt the order of comparison)



The Kling-Gupta and the Symmetric Bounded Efficiency

BiasCorr Variability

𝐾𝐺𝐸 = 1 − 𝑟 − 1 ! +
𝜎"
𝜎#
− 1

!
+

𝜇"
𝜇#

− 1
!

Gupta et al (2009) J. of Hydrology:

BiasCorr Variability

𝑆𝐸𝐵 = 1 − 𝑟 − 1 ! +
𝜎"$ − 𝜎#$
𝜎"$ + 𝜎#$

!

+
𝜇"$ − 𝜇#$
𝜇"$ + 𝜇#$

!

The SEB is defined as the KGE, but the ratio-1 is 
replaced by the Normalized Bias:  



KGE is unbounded 
and asymmetric: 
swapping X and Y 

gives different results

The better performance 
of HRES is dominated by 
the better representation 
of variability at small-to-medium scales, as well as 
better linear dependence (corr). On the largest 
scale, on the other hand, HRES is slightly 
underperforming EDA due to over-forecast bias.

Both SBE and KGE separate the performance of 
HRES from EDA, as SSSS did (whereas NSE did not) 



Summary and Conclusions
• Scale separation diagnostics assess the bias, error and skill on separate scales: they 

enable indepth analysis of forecast performance in association with its scale structure.
• MSE as NSE are proportional to the forecast variability and hence tend to overly penalize 

high resolution products wrt coarser/smoother ones); The SSSS (ref=random) enables a 
fairer comparison of products with different resolutions.

• The efficiencies summarize the overall performance (accounting for correlation, 
variability and average value). SBE is bounded and symmetric, suitable for assessing 
reanalyses, since invariant wrt the order of comparison. 
Ø The Energy NB, SSSS, SBE separate HRES from EDA (whereas MSE and NSE did not). 
Ø The better performance of HRES is dominated by better representation of variability 

at small-to-medium scales, as well as better linear dependence (corr). On the largest 
scale, on the other hand, HRES is slightly underperforming EDA due to over-forecast 
bias.

THANK YOU!



Extras



Spatial verification approaches

Feature-based: 
evaluate attributes of 

isolated features

Neighborhood: relax 
requirement of exact 
space-time matching

Scale-separation: analyse scale-
dependency of forecast errorField-deformation: use a 

vector and scalar field to 
morph forecast into obs

From Dorninger et al 2018, BAMS

Distance metrics: 
evaluate distances 
for all grid-points

• account for coherent spatial structure and the presence of features
• provide information on error in physical terms (meaningful verification), 

e.g. assess location and timing errors (separate from intensity error)
• account for small time-space uncertainties (avoid double-penalty issue)



Hoffmann et al (1995); Hoffman and Grassotti (1996), 
Nehrkorn et al. (2003); 
Brill (2002); Germann and Zawadzki (2002, 2004); 
Keil and Craig (2007, 2009) DAS; 
Marzbar and Sandgathe (2010) optical flow; 
Alexander et al (1999), Gilleland et al (2010) image 
warping

1.Use a vector (wind) field to deform the forecast 
field towards the obs field
2.Use an amplitude field to correct intensities of 
(deformed) forecast field to those of the obs field

●Vector and amplitude fields provide physically meaningful diagnostic information: feedback for data 
assimilation and now-casting.
●Error decomposition is performed on different spectral components: directly inform about small scales 
uncertainty versus large scale errors.

Field-deformation methods



Feature-based techniques

1. Identify and isolate (precipitation) features in forecast and observation fields 
(thresholding, image processing, composites, cluster analysis)

2. assess displacement and amount (extent and intensity) error for each pairs of 
obs and forecast features; identify and verify attributes of object pairs (e.g. 
intensity, area, centroid location); evaluate distance-based contingency tables 
and categorical scores; perform verification as function of feature size (scale); 
add time dimension for the assessement of the timing error of precipitation 
systems.

Observed

Forecast

Ebert and McBride (2000), Grams et al (2006), Ebert and 
Gallus (2009): CRA
Davis, Brown, Bullok (2006) I and II, Davis et al (2009): MODE
Wernli, Paulat, Frei (2008): SAL score
Nachamkin (2004, 2005): composites
Marzban and Sandgathe (2006): cluster
Lack et al (2010): procrustes



Distance metrics for binary images

➔ Evaluate distances for all grid-points 
➔ Account for distance between objects, 
and similarity in shapes.
➔ Compare binary images: alternative 
metrics to be used along with traditional 
categorical scores

Image Processing: Baddeley (1992); Dubuisson
and Jain (1994). Precipitation: Gilleland et al.(2008, 
2011), Schwedler & Baldwin (2011), Venugopal et al. 
(2005); Zhu et al (2010), Aghakouchak et al (2011). 
Brunet and Sills (2015). Sea-ice: Heinrichs et al 
(2006); Dukhovskoy et al (2015), Hebert et al (2015).

q Average distance
q K-mean
q Fréchet distance
q Hausdorff metric

q Modified Hausdorff
q Partial Hausdorff
q Baddeley metric

q Pratts’ figure of merit Δ= 0.5625 Δ= 0.96875
hits = 9; false alarms = 11;  

misses = 7; nils = 37



1. Define neighbourhood of grid-points: relax requirements for exact positioning (mitigate double penalty: 
suitable for high resolution models); account for forecast and obs time-space uncertainty.

2. Perform verification over neighbourhoods of different sizes: verify deterministic forecast with 
probabilistic approach

t

t + 1

t - 1

Forecast value

Frequency

forecast

observation

Yates (2006), upscaling, cont&cat scores; Tremblay et al. (1996), distance-dependent POD, POFD; 
Rezacova and Sokol (2005), rank RMSE; Roberts and Lean (2008) Fraction Skill Score; 
Theis et al (2005); pragmatical approach; Atger (2001), spatial multi-event ROC curve; 
Marsigli et al (2005, 2006) probabilistic approach.

Neighbourhood verification

Rainfall
Frequency

forecast

observation



Scale Separation methods

1. Decompose forecast and observation fields into spatial 
scale components (filters: wavelets, Fourier, DCT, … )
2. Perform verification on different scale components, 
separately (continuous, categorical, probabilistic scores)

Rationale: weather phenomena of different spatial scales 
are governed by different physical processes

from Jung and Leutbecher (2008)

Briggs and Levine (1997), wavelet cont (MSE, corr); Casati et al. (2004), Casati (2010), wavelet cat (HSS, FBI, scale 
structure); Zepeda-Arce et al. (2000), Harris et al. (2001), Tustison et al. (2003), scale invariants parameters;
Casati and Wilson (2007), wavelet prob (BSS=BSSres-BSSrel, En2 bias, scale structure); Jung and Leutbecher (2008), 
spherical harmonics, prob (EPS spread-error, BSS, RPSS); Denis et al. (2002,2003), De Elia et al. (2002), discrete cosine 
transform, taylor diag; Livina et al (2008), wavelet coefficient score. De Sales and Xue (2010)

è Assess scale structure
è Bias, error and skill on different scales
è Scale dependency of forecast predictability (no-skill to 

skill transition scale)



The Haar wavelet 
filter

Wavelets are locally defined 
real functions characterised by 
a location and a spatial scale.

Similar to the sine and cosine 
for the Fourier Transforms, 
discrete wavelets form an 
orthonormal basis of 𝐿! ℝ , so 
that any real function (e.g. a 2D 
field) can be expressed as a
linear combination of wavelets, 
i.e. as a sum of components 
with different spatial scales.



2D Haar discrete wavelet decomposition

𝑍 = Σ()*
+ 𝑍( + 𝑍̅

The field is decomposed into the 
sum of different components on 
different spatial scales

The largest component is the field 
average.



Casati (2010) Wea & For, vol. 25 
Intensity-scale verification technique
For each threshold and scale:
• energy informs on the amount of events; 
• energy relative diff. measures the bias; 
• energy % assess the scale structure.


