

Sub-seasonal to Seasonal Prediction Project (S2S)

Frederic Vitart, ECMWF Andrew W. Robertson, IRI, Columbia University 1 November 2021

The WWRP/WCRP S2S Project

- The S2S project started 2013 and is now in its second phase (2019-2023)
- WWRP: S2S is one of the 3 core projects
- WCRP: S2S is under ESMO
- International Coordination Office hosted by APCC.
- Contribution to S2S trust fund from Australia, Canada, UK and Germany.

The WWRP/WCRP S2S Database

- Daily 3-week behind real-time forecasts since January 2015 + re-forecasts
- 11 models currently available
- Same grid (1.5 degree) / GRIB2 format
- About 80 variables available, including 3D variables on 10 pressure levels
- Hosted at ECMWF, CMA and IRI
- 10 ocean variables have been recently added
- 1 new model added (Chinese Academy of Science) – Work is ongoing to add NASA-GMAO and IITM

Contributing Centres to S2S database
Data provider (11) O Archiving centre (3)

> 250 publications

The S2S Real Time Pilot Initiative

- Started November 2019 & will continue until end October 2022 (includes 1year extension recently approved)
- Goals:
 - Identify what is needed to make S2S forecasts usable & how this varies by sector/organisation/exper ience
 - Understand how projects engage with users & how this relates to pullthrough/demand
 - Develop understanding of the S2S forecast value chain & the needs for endto-end user applications
 - Development of best practice guidelines and/or recommendations to enhance pull-through & sustainability

- Approach
 - 16 co-development projects
 - 3 sets of questionnaires: April/May 2020, Winter 2020/2021, Autumn 2021

Sectors:

- Water
- Energy
- Health
- Agriculture/food security
- Disaster risk reduction

National Centre for Atmospheric Science SIPN² Jet Propulsion Laboratory California Institute of Technology Digiscape S2S4E ESPO mate Services ARRCC Met Office ERI Cemaden **GCRF** African SWIFK METEO National Research Council of Italy Institute of Atmospheric Sciences ACToday: Adapting Agriculture to and Climate WISER Climate Today, for Tomorrow ukaid IGAD (RI) **Climate Prediction and** JEPR Applications Centre

Countries/regions:

- Senegal
- Ethiopia
- Bangladesh
- Guatemala
- Columbia
- Ghana
- Kenya
- Nigeria
- Singapore
- USA
- Europe
- Asia & Pacific
- Global

S2S AI/ML Challenge

- The WMO Research Board has identified Artificial Intelligence (AI) as a key research topic in weather and climate science for the upcoming years
- A competition has been organized to encourage the use of AI tools to extract valuable information from the S2S database.
 - Can purely empirical forecasts beat S2S systems?
 - Can AI/ML methods improve S2S system forecasts by better calibration/multimodel ensemble methods?
- Hosted by Swiss Data Science Center at ETH Zürich, with ECMWF support through the new European Weather Cloud for data access and some CPU time
- A contractor has been hired by WMO
- Timeline: July 2021 Feb 2022
- All codes and forecasts will be made open source after the end of the competition to foster community learning on AI/ML methods for S2S
- Small monetary prizes from WMO

Phase II Science Subprojects

Science sub-project activities

Coordinated experiments:

- Evaluating the Impact of Aerosols on NWP and Subseasonal Prediction (WGNE-S2S-GAW Coordinated experiment)
- Coordinated experiment to better understand stratosphere-troposphere interaction in NWP and climate models (Collaboration with SPARC/SNAP)
- Ocean observing system experiments to better understand the impact of ocean observations on sub-seasonal forecasts

Community papers:

- Sudden stratospheric warming prediction and impact on the troposphere (2 papers, Domeisen et al, 2020)
- Diagnosing MJO teleconnections in S2S models (Stan et al. 2021, submitted to BAMS).
- S2S ocean forecasting (DeMott et al., submitted to EOS)

Stratosphere sub-project (Led by D. Domeisen - Link with SPARC/SNAP)

1. Stratosphere-troposphere biases in S2S models

• Activity led by Zachary Lawrence (NOAA/CIRES) to quantify stratospheric biases in the S2S models and their relationship to skill.

• Current status: two papers in prep; analysis for paper #1 completed, paper draft underway.

- S2S zonal-mean biases (day 28) relative to ERA-interim.
- Common features: extratropical UTLS cold bias, tropical stratospheric wind easterly bias, overall too warm in stratosphere (radiative problem?), NH polar vortex too strong and cold
- Biases generally more severe in low top models

2. Stratospheric nudging and predictable surface impacts (SNAPSI)

 Activity led by Peter Hitchcock (NOAA/CIRES) for investigating the role of the polar stratosphere in sub-seasonal forecasts using nudging experiments. The basic experimental design proposes to focus on the evolution of several specific events as case studies.
 Experimental protocol to be submitted to GMD – 10 modelling centres are participating

Ocean sub-project (Led by C. DeMott)

🔯 wmo омм

MJO-teleconnection sub-project Led by C. Stan

Community paper on MJO teleconnection diagnostics applied to S2S models (Stan et al, submitted to BAMS) Most of the diagnostics are process-based.

Composite of 2mtm anomalies following an MJO in phase 6-7

Ensemble sub-project (Led by Y. Takaya)

Benchmarking a spread-error relationship

Can we forecast the forecast skill from the S2S ensemble prediction? \rightarrow Yes, to some extent (in ECMWF model).

Can we forecast the forecast skill from the S2S ensemble prediction?

 \rightarrow Yes, to some extent (in ECMWF model).

Connections with WGNE

- WGNE–S2S GAW aerosol experiments (ongoing)
- Coupled initialization (new initiative by Tim Graham)

Possible topics of common interest:

- Errors in the representation of MJO Teleconnections
- Ocean weather prediction
- Impact of atmosphere/ocean resolution on S2S prediction

