(Two) Ongoing efforts in the French NWP/climate modelling community

<u>**R. Roehrig**</u>¹, F. Couvreux¹, F. Hourdin², C. Rio¹, F. Lohou³, the High-Tune and DEPHY communities...

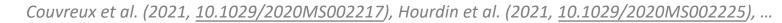
¹ CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
 ² LMD, IPSL, Sorbonne Universités, CNRS, Paris, France
 ³ Laboratoire d'Aérologie, Université de Toulouse, Toulouse, France

Legacy of the High-Tune project (2018-2021)

Initial motivations

- Model <u>calibration/tuning</u>: bottleneck in NWP/climate modelling
- Critical role of <u>boundary-layer clouds</u> in the Earth system
- Lack of references to benchmark boundary-layer cloud radiative effects

Process-based climate model development harnessing machine learning A new philosophy for climate (and NWP) model calibration


- **Formalized** calibration process (transparent, reproducible)
- Starting at the process level (1D / LES or Observations)
- Natural articulation between 1D and 3D (and coupled) configurations
- Accounting for sources of uncertainties
- Rather than optimize, identify sets of parameters compatible with a set of given constraints

A statistical framework to better address the complexity of the calibration process, and to accelerate it

- History matching with iterative refocusing (Williamson et al. 2015, 2017)
- Use statistical emulators to explore the whole space of parameters, at quasi-null computational cost
- Be parsimonious in terms of "true", expensive simulations

Game changer in climate modelling

- Separation of concerns between development of model physical content and parameter calibration
- Increased efficiency in implementing new developments and quantify their true benefit
- Rigorous comparison between parameterizations or between model physics
- Exploring model parametric uncertainty, and thereby the model emergent properties

an

History matching with iterative refocusing

Framework

- Define targeted metrics f_k, their references and their uncertainties
- Identify the relevant model parameters λ and their "acceptable" ranges (input parameter space Λ)
- Build an experimental design (learning dataset)
- Build an emulator $f_k(\mathbf{\lambda})$ for each metrics (Gaussian Processes)
- Identify the sub-space of Λ which is not compatible with the chosen constraints

(Not-Ruled-Out-Yet - NROY - space) knowing:

- The reference uncertainty,
- The uncertainty due to the emulator,
- The model structural uncertainty (interpreted so far as a tolerance to error)
- Implausibility, cutoff (7=3)

$$I_{f}(\boldsymbol{\lambda}) = \frac{|r_{f} - \mathrm{E}[f(\boldsymbol{\lambda})]|}{\sqrt{\sigma_{r,f}^{2} + \sigma_{d,f}^{2} + \mathrm{Var}[f(\boldsymbol{\lambda})]}}.$$

$$\mathrm{NROY}_{f}^{1} = \{\boldsymbol{\lambda} \mid I_{f}(\boldsymbol{\lambda}) < T\}$$

$$\mathrm{NROY}^{1} = \bigcap_{f} \mathrm{NROY}_{f}^{1} = \{\boldsymbol{\lambda} \mid I_{f}(\boldsymbol{\lambda}) < T, \text{ for all } f\}$$

- Iterate over several waves to reduce the emulator uncertainty in NROY^{N-1}, until convergence

Proof of concept: from 1D to 3D with LMDZ

Multi 1D case approach (focus on boundary-layer clouds)

- Dry convective boundary layer (IHOP, Couvreux et al. 1996)
- Continental cumulus (ARMCU, Brown et al. 2002)
- Marine cumulus (RICO, van Zanten et al. 2011)
- Stratocumulus-cumulus transition (SANDU, Sandu et al. 2011)
- Reference LES: Meso-NH or UCLA

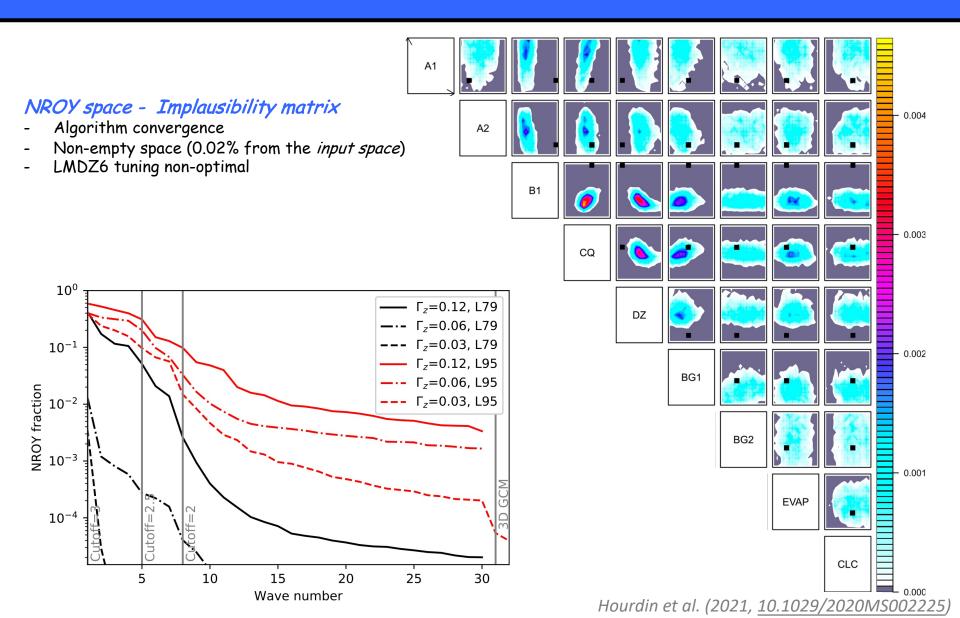
Metrics Retained for the SCM/LES Tuning								
Case	IHOP	ARMCU	RICO	SANDU	SANDU	SANDU		
Subcase	REF	REF	REF	REF	SLOW	FAST		
Time	7–9	7–9	19–25	50-60	50-60	50-60		
$\theta_{\rm 400-600m}$	Х	х	-	-	-	-		
$q_{ m v,400-600~m}$	-	х	-	-	-	-		
$\alpha_{cld,\max}$	-	х	Х	-	-	-		
Zcld,ave	-	Х	-	Х	-	-		
$z_{cld,\max}$	-	Х	-	Х	Х	Х		

Metrics

- 11 metrics in 1D: potential temperature, moisture averaged in the boundary layer, cloud cover
- 11 metrics in 3D: TOA radiative budget components, global/regional averages

Mask	Variable	Metrics	target	error
Glob	Total rad. TOA (rt) Swup TOA (rsut)	glob.rt glob.rsut circAa.rsut	$W m^{-2}$ 2.5 99.6 24.0	${ m W}~{ m m}^{-2}$ 0.2 5 5
Convective, intermediate, subsiding Circum Antact. anome	Ny SWup TOA (<mark>rsut)</mark> LWup TOA (rlut)	circAa.rlut subs.rsut weak.rsut conv.rsut subs.rlut	-48.6 84.9 81.8 103.2 274.6	5 5 5 5 5
Eastern Tropical Ocean anomaly	SWup TOA (<mark>rsut</mark>)	weak.rlut conv.rlut etoa.rsut	$264.3 \\ 235.8 \\ 11.0$	5 5 5

Parameters

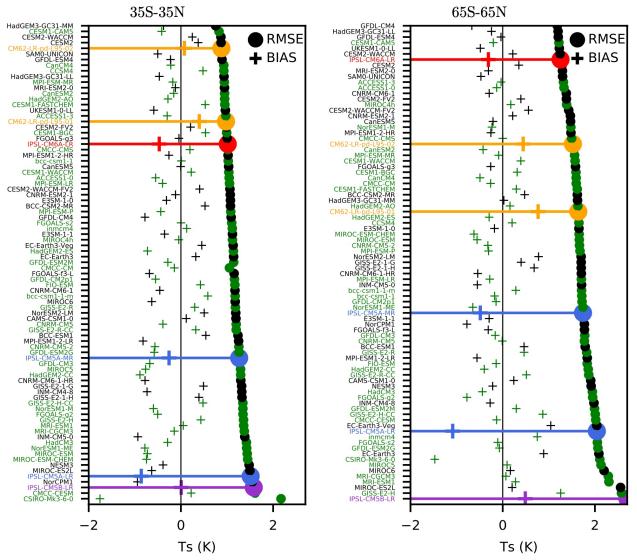

9 parameters from the cloud, shallow convection and microphysics parameterizations

Waves

- 30 waves in 1D, with a progressive reduction of the implausibility cutoff (de 3 à 2)
- 2 waves then in 3D

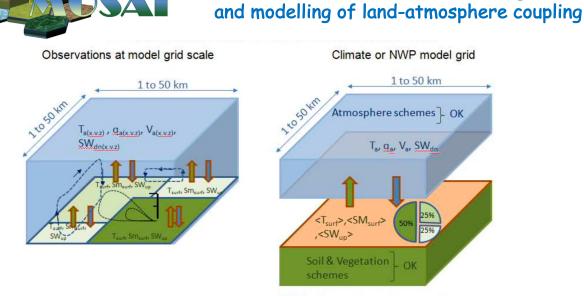
Hourdin et al. (2021, <u>10.1029/2020MS002225</u>)

Proof of concept: from 1D to 3D with LMDZ After 30 waves in 1D


Proof of concept: from 1D to 3D with LMDZ From 1D to 3D to coupled

3D model calibration starting from the 1D NROY space

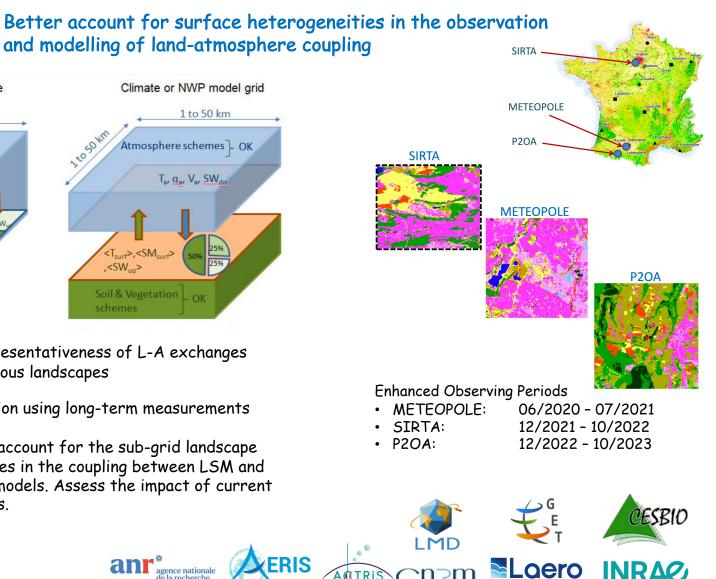
- Non-empty space (0.004% from the input space)
- The 1D setup has efficiently provided pre-conditioning of the 3D configuration
- LMDZ6 tuning "by hand" good, though slight not optimal
- Probably a need to add a few further waves


From 3D to coupled

- Recalibration by hand of the TOA radiation budget (1 parameter)
- Behaviour ~similar the version tuned "by hand" during 2-3 years.

Hourdin et al. (2021, 10.1029/2020MS002225)

MOSAI (2021-2024) Models and Observations for Surface-Atmosphere Interactions


WP1: Uncertainty and representativeness of L-A exchanges measured over heterogeneous landscapes

WP2: Model evaluation using long-term measurements

WP3: Better account for the sub-grid landscape heterogeneities in the coupling between LSM and atmospheric models. Assess the impact of current simplifications.

agence nationale

la recherche

https://mosai.aeris-data.fr