

U. S. Navy Earth System Prediction Capability (ESPC) Global Coupled Subseasonal Forecast System: Overview and Impacts of Including Analysis Correction-based Additive Inflation (ACAI)

U. S. Navy Earth System Prediction Capability Team (Marine Meteorology, Ocean Sciences, Remote Sensing, and Space Science Divisions)

William Crawford

U. S. Navy ESPC Overview

Ensemble ESPC: V1 vs V2

ESPC Version Number	Time Scale, Frequency	Atmosphere NAVGEM	Ocean HYCOM	Sea Ice CICE	Waves¹ WW3	Land Surface LSM	Aerosol ²
V1	0-45 days weekly 16 members	T359L60 (37 km) 60 levels	1/12° (9 km) ³ 41 layers	1/12° (3.5 km) ⁴ CICE V4		Module within NAVGEM	
V2	0-45 days (2x) weekly 16 members ⁵	T681L100 (19 km) L143 HA	1/12° (9 km)³ 41 layers Tides	1/12° (3.5 km) ⁴ CICE V6	1/4° (28 km)	Module within NAVGEM	Module within NAVGEM

¹One-way coupling to waves only.

Navy ESPC V1 Description: Barton, N., et al. 2020: The Navy's Earth System Prediction Capability. Earth and Space Science. e2020EA001199. doi.org/10.1029/2020EA001199

² Atmosphere-aerosol coupling only.

³ Horizontal resolution at the equator.

⁴ Horizontal resolution at the North Pole.

⁵The exact configuration determined by operational resources available.

Analysis Correction-based Additive Inflation (ACAI)

- Goal: decrease model bias and improve spread-skill
 - Compute $\delta x_m^F = \overline{\delta x^a} + \alpha \left[\delta x_m^a \overline{\delta x_e^a} \right]$

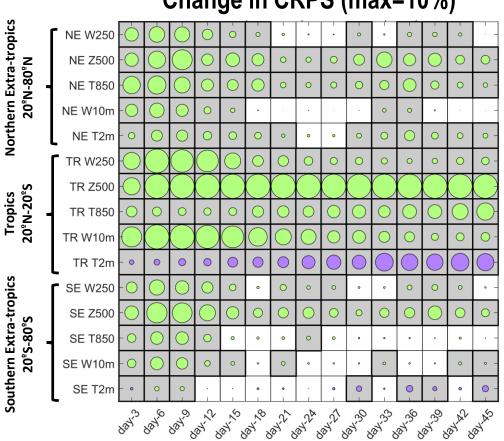
-Seasonal (3-month) average analysis correction; address bias same for all ensemble members

stochastic component; address ensemble spread randomly sampled from same 3-month period as δx^a different for each ensemble member (m)

- Incrementally add $\frac{\delta x_m^F}{T}$ at each time step (T = time steps/6-hr forecast) to T,U,V,Q,P
- Compute/add a new δx_m^F over each 6-hr period of the forecast
- Use a 1-year archive of analysis corrections from the weakly coupled DA system
- What do the $\overline{\delta x^a}$ (or bias) terms look like (extra slide)?

$$\delta x^a$$
 = analysis correction (or increment) $\delta x^a = x^a - x^f$

analvsis - forecast

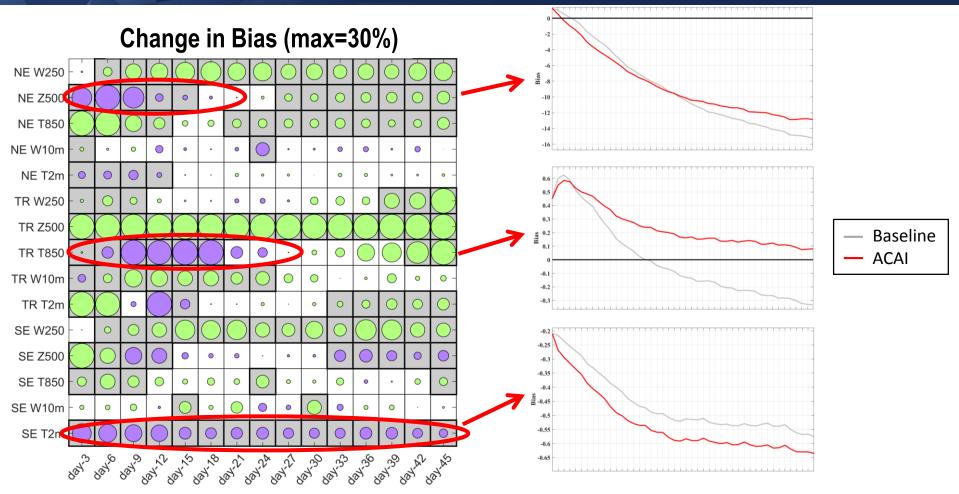


Change in CRPS (max=10%)

- Similar improvement to CRPS, though we do see more positive impact to the extra-tropics
- Largest impact in tropics, especially 500mb height

Southern Extra-tropics

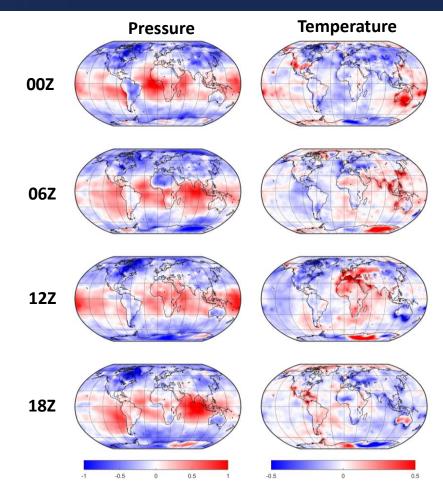
Oddly, tropical 2m air temp is degraded


- ← Jet level wind (250hPa)
- ← Mid-level height (500hPa)
- ← Tropo. Temp (850 hPa)
- ← Surface Wind (10m)
- ← Surface Temp (2m)
- Positive impact Negative impact

Bold outline/gray shading indicates 95% significant

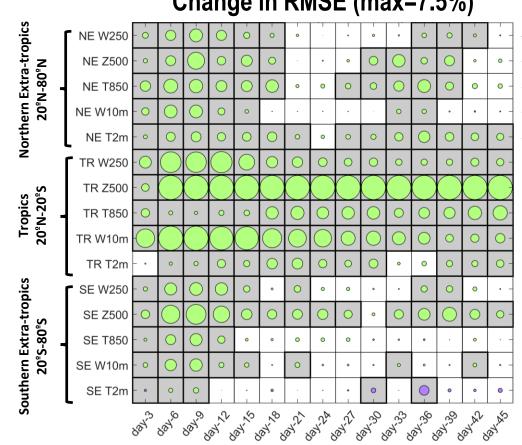
Verification against **ECMWF** analyses

Summary


- We have implemented analysis correction-based additive inflation (ACAI) in Navy ESPC to address model error during forecast integrations, under consideration for transition to operations.
- ACAI presents substantial improvement for many standard skill metrics out to 45-days using both a static and moving archive of analysis corrections
- We also see improvement by including SKEB in the coupled system and hope the two methods (ACAI and SKEB) will prove additive in their benefits
- In addition to standard skill metrics, we see improvement to moist processes including total precipitable water and MJO biases
- Some issues remain to be sorted out (enhanced SST biases in some regions).

Z-based dependence of corrections

- Large dependence on time-of-day in the structure of the average analysis corrections
- Average corrections to pressure and temperature show a clear migration westward between 00Z and 18Z
- In ACAI we use analysis corrections relative for the forecast time-of-day to produce the perturbations



Change in RMSE (max=7.5%)

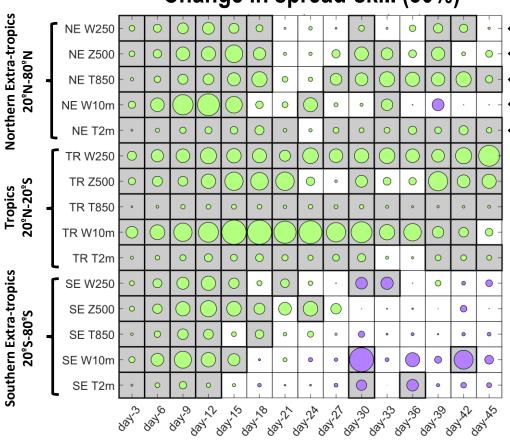
- Almost across the board improvement to RMSE
- Largest impact in tropics, especially 500mb height

- ← Jet level wind (250hPa)
- ← Mid-level height (500hPa)
- ← Tropo. Temp (850 hPa)
- ← Surface Wind (10m)
- ← Surface Temp (2m)
- Positive impact

Negative impact

Bold outline/gray shading indicates 95% significant

Verification against **ECMWF** analyses



Change in spread-skill (30%)

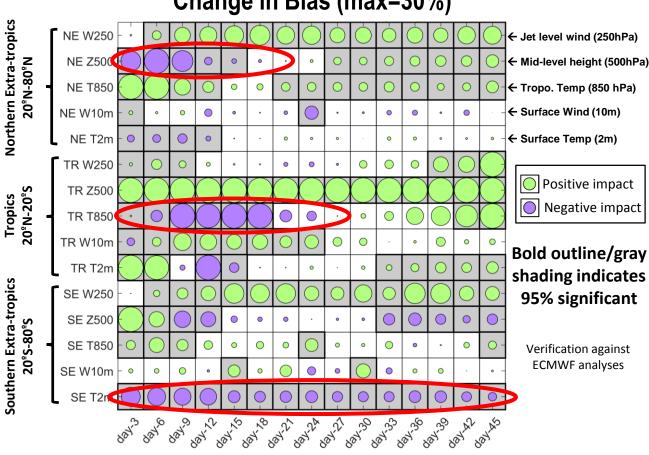
Scorecard presenting changes to baseline (v1) system by applying ACAI Northern Extra-tropics

Southern Extra-tropics

- Changes in spread-skill (ratio of ensemble mean squared error to ensemble spread)
- **Substantial improvement** to NE and tropics; neutral impacts to SE at later lead times

- ← Jet level wind (250hPa)
- ← Mid-level height (500hPa)
- ← Tropo. Temp (850 hPa)
- ← Surface Wind (10m)
- ← Surface Temp (2m)
 - Positive impact
 - Negative impact

Bold outline/gray shading indicates 95% significant


Verification against **ECMWF** analyses

Change in Bias (max=30%)

- Scorecard presenting changes to baseline (v1) system by applying ACAI
- Scorecards highlight 5 variables in 3 regions
- **Substantial improvement** to the bias of many variables out to 45-days

