

Update on NWP activity at the Hydrometcentre of Russia

HYDROMETCENTER OF RU About the weather - at first hand	SSIA	Fo	recasts	Actual data	a Climate	Around	l the Weather	About u
Forecasts > Uncategorised > Medium-range forecasts for cities of Russia								
Medium-range (1-week) forecasts for cities of	Medium-range forecasts for cities of Russia							
Russia	Country		Region of Rus	sia	Station (city)			
 Global medium-range forecasting system description 	RUSSIA	~	MOSCOW A	REA ~	MOSCOW	~		
	Actual weather Look KASHIRA, MINERAL'NYE VO							
Short-range limited area forecasts by COSMO-RU model: Meteograms	1-week forecast	GRAPHS						
	0	Wednesday November, 3	Thursday November, 4	Friday November, 5	Saturday November, 6	Sunday November, 7	Monday November, 8	Tuesday November, 9
 COSMO-RU model with grid spacing 7km: Forecast maps 	Day	\sim		~				\sim
 COSMO-RU model with grid spacing 13km: Forecast maps 	T max	7°	10°	12°	9°	6°	6°	2°
	Precipitation, mm (probability)	0.4 (72%)	0	2 (91%)	0.2 (59%)	0	1.5 (79%)	0.3 (75%)
Nowcasting of precipitation intensity	Wind, m/s	K 6	1 5	1 6	7 4	→ 6	7 4	↓ 7
	Pressure	751	753	748	747	747	743	748
Global forecast of ocean wave parameters	Night	\sim						>
Global medium-range forecast fields in GRIB	T min	7°	5°	8°	5°	3°	2°	

Operational NWP systems

Federal Service for Hydrometeorolo and Environmental Monitoring

HYDROMETEOROLOGICAL CENTRE OF RUSSIA

Regional

Based on COSMO model

3 operational domains, horizontal step from 6.6 km to 1 km 1.0 km resolution over Moscow region with urban effects On-going transfer from COSMO to ICON Postprocessing using Neural Network

Global data assimilation: 3D-Var

EnVar under development

10-days medium range forecasts Operational: SLAV20, 0.225° in lon, 0.16°-0.24° in lat, 51 levels New version: SLAV10, 0.1° in lon, 0.08°-0.12° in lat, 104 levels

Speed up the SLAV10 with I/O from 32min/day @4000 cores to 13 min/day @2916 cores

- increase of time step value by factor 2.5

(algorithmic improvement)

- further code optimization (memory access)
- parallel I/O

Operational NWP systems

Federal Service for Hydrometeorolog and Environmental Monitoring

HYDROMETEOROLOGICAL CENTRE OF RUSSIA

Regional

Based on COSMO model

3 operational domains, horizontal step from 6.6 km to 1 km 1.0 km resolution over Moscow region with urban effects On-going transfer from COSMO to ICON Postprocessing using Neural Network

Global data assimilation: 3D-Var EnVar under development

10-days medium range forecasts Operational: SLAV20, 0.225° in lon, 0.16°-0.24° in lat, 51 levels New version: SLAV10, 0.1° in lon, 0.08°-0.12° in lat, 104 levels

LETKF-based ensemble prediction system 0.9° in lon, 0.72° in lat, 96 levels,M60, SPPT+SPP Ensemble is centered to the HMC operational analysis

Subseasonal and seasonal probabilistic forecast

1.4°x1.1°L28 currently,

0.9°x0.72°L96 with top level 0.04 hPa by the end of this year.

Non-hydrostatic dynamical core using quasi-uniform horizontal grid

Features:

- Equiangular gnomonic cubed-sphere grid
- High-order finite-difference formulation
- semi-implicit semi-Lagrangian time integration
- vertical generalized z-coordinate system

Current state:

- Shallow water model
- -2D vertical plane model
- Galewsky barotropic instability & Schar orographic wave shown

Courtesy M.Tolstykh

A new approach to generation of model-error perturbations: Additive Model perturbations scaled by Physical Tendency (AMPT)

$$\Delta \mathsf{P}_{i}(\mathsf{x},\mathsf{y},\zeta,\mathsf{t}) = \epsilon \,\xi_{i}(\mathsf{x},\mathsf{y},\zeta,\mathsf{t}) \quad \mathcal{P}_{i}(\mathsf{x},\mathsf{y},\zeta,\mathsf{t})$$

 ΔP_i is the perturbation in tendency of *i*-th model variable, ξ_i is the zero-mean, unit-variance random field, ϵ is the magnitude parameter, \mathcal{P}_i (x, y, ζ , t) is an area-averaged physical tendency

Differences with SPPT:

- Switch from pointwise physical tendency P_i to an area-averaged physical tendency \mathcal{P}_i .
- Specify independent random fields for different model variables ξ_i .
- Make ξ_i depend on the vertical coordinate.

in question

M Tsyrulnikov, E Astakhova, D Gayfulin

A new approach to generation of model-error perturbations: Additive Model perturbations scaled by Physical Tendency (AMPT)

- Tested over a two-month period in a COSMO-based EPS with a 2.2 km resolution.
- > 4D random pattern ξ was generated by the Stochastic Pattern Generator (SPG, Tsyrulnikov, Gayfulin, 2017).
- > SPG space and time scales: $L_{\xi} = 50 \text{ km}$, $T_{\xi} = 1 \text{ h}$
- ➤ T, u, v, ps, q, multi-level T_{soil}, W_{soil} were perturbed.

Results:

- A positive effect from perturbing T, u, v, T_{soil}, W_{soil}, mixed effect from perturbing q.
- AMPT significantly outperformed SPPT for T2m, with nearly the same results for precipitation and near-surface wind.

Experiment	Model perturbations
NOPERT	None
SPPT	SPPT: atmosphere
AMPT-NOSOIL	AMPT: atmosphere
AMPT-SOIL	AMPT: atmosphere + soil

M Tsyrulnikov, E Astakhova, D Gayfulin

A new approach to ensemble-variational assimilation: The Locally Stationary Ensemble Filter (LSEF)

The idea is to learn a square root W of the background error covariance matrix $B = W \cdot W^T$ directly from the ensemble. (The W matrix is the key ingredient of any variational analysis.) For W to be identifiable from the ensemble, a few constraints on its structure are introduced.

The most important constraints are *local stationarity* (or weak non-stationarity) and smooth *local spatial spectra*.

In numerical experiments with a non-stationary (in time and space) 1D toy model of truth, LSEF outperformed both Var and EnKF for small to moderate-size ensembles.

A 3D version under development.

The technique is computationally tractable: its non-ensemble version has been used at our center for operational meteorological data assimilation for several years.

M Tsyrulnikov and A Sotskiy

Elena Astakhova, WGNE36, November 4, 2021

Summary

• Most of NWP systems were upgraded following the increase in computer capacity : the resolution of global deterministic model in medium-range and seasonal forecasting was improved, the domains for high-resolution regional forecasting were enlarged.

- The new global ensemble prediction system has been developed and operational trials are demonstrating its good skill (see additional slides).
- The new non-hydrostatic dynamical core for the SLAV global model is under development .
- The new scheme for generating model-error perturbations (Additive Model perturbations scaled by Physical Tendency) was suggested and its positive effect on T2m forecasting was demonstrated.
- A new approach to ensemble-variational assimilation was suggested termed the Locally Stationary Ensemble Filter (LSEF). LSEF outperformed both Var and EnKF for small to moderate-size ensembles.

Additional slides

SL-AV global atmosphere model

SL-AV: Semi-Lagrangian, based on Absolute Vorticity equation

- Finite-difference semi-implicit semi-Lagrangian dynamical core (Tolstykh et al, GMD 2017). Vorticity-divergence formulation, unstaggered grid (Z grid), 4th order finite differences. Possibility to use variable resolution in latitude.
- Many parameterizations algorithms for subgrid-scale processes developed by ALADIN/ALARO consortium.
- Parameterizations for shortwave and longwave radiation: CLIRAD SW + RRTMG LW.
- INM RAS- SRCC MSU multilayer soil model (Volodin, Lykossov, Izv. RAN 1998).

Results for SLAV-10

• Speed up the SL-AV10 with I/O from 32min/day @4000 cores to 13 min/day @2916 cores

- increase of time step value by factor 2.5 (algorithmic improvement)

- further code optimization (memory access)
- parallel I/O
- Setup of operational technology, including gradual shift from GRIB to NetCDF
- Currently under tuning

Ensemble prediction system

- Local Ensemble Transform Kalman Filter (LETKF) is used to generate perturbations in the ensemble of initial data
- Ensemble is centered to the HMC operational analysis
- SL-AV model incorporates SPPT for temperature and vorticity and SPP for 27 parameters in physical parametrizations
- Ensemble size 60 members

Reliability diagrams and ROC (Northern extratropics, Jan 2021)

New long-range prediction system at Hydrometcentre of Russia

- Resolution 0,9x0,72° lon-lat, 96 levels
- Uppermost level at 0,04 hPa
- 500-700 m resolution in the stratosphere
- SW radiation: CLIRAD SW, LW radiation: RRTMG LW (11 + 16 spectral bands)
- Boundary layer: Bastak-Duran et al JAS 2014
- Marine stratocumulus, sea-ice T
- INM RAS multilayer soil scheme

Elena Astakhova, WGNE36, November 4, 2021