Coupled Initialisation

WGNE Ideas

Oscar Alves and Tim Graham

Background

- WGNE expanding to models of the earth system (previously focus on atmospheric modelling)
- Multiple modelling centers moving to coupled NWP (e.g. Canada, Met Office, ECMWF).
- Also coupled models widely used for subseasonal, seasonal and decadal forecasts.
- Currently using weakly coupled DA (i.e. use coupled model background but ocean & atmosphere DA are done separately).
- What is the path to strongly coupled DA?

WGNE 2020 DA Recommendations

- DAOS:Potential areas for collaboration:a.Coupled initialization–Agreed would be a good joint project between WGNE, DAOS and OMDP. Next step is to set up a meeting between interested people from the three groups. Daryl recommended Andy Moore from DAOS, Baylor and others from OMDP(AI:Tim Grahamas WGNE rep)b.
- Use of DA for activities outside of creating initial conditions–Agreed next step is for WGNE to conduct a review of current activities in this area, to be presented at WGNE36 and a future activity with DAOS discussed there. (AI:Reynoldswith DAOS)
- c.Including evaluation, defining boundaries, of AI/ML methodology including TL/AD emulators. (R:Daryl to consider this for part of their DA workshop. Could be a topic for WGNE error workshop in 2022

Related

- A survey of coupled model errors to be conducted (similar to that done for atmospheric model errors)
- WGNE Project on surface flux intercomparison from NWP models
- TC verification:
 - a.Review paper of TC initialization with DAOS involvement (AI:Masashias contact point for WGNE).
 - b.Coordinate workshop to understand why all current initialisation methods result in TC's which are too weak despite models being capable of producing stronger TC's (AI:Masashi with DAOS, possibly part of review above)

Current WGNE Activities

- TC verification:
 - a.Review paper of TC initialization with DAOS involvement (AI:Masashias contact point for WGNE).
 - b.Coordinate workshop to understand why all current initialisation methods result in TC's which are too weak despite models being capable of producing stronger TC's (AI:Masashi with DAOS, possibly part of review above)

Using DA to Analyse/Understand Systematic Errors

- Improving models, particularly reducing systematic errors has been perhaps the main WGNE objective
- What can we gain from DA increments about systematic errors
- Can we use DA corrections to provide model bias correction
- Can we use machine learning to develop these bias corrections ?
- Idea: Forget about tuning coupled models put the best physics together, run in DA mode and use machine learning to calculate ~time step corrections. So DA and machine learning do the physics/bits the model cannot do - avoid tuning physics to compensate errors.

Understanding the impact of SST errors

For example, Roberts et al., 2021 showing the impact of SST errors on forecasts throughout the Northern Hemisphere

Strongly Coupled DA

- What are the best approaches for coupled DA
 - 4D Var ?
 - EnKF
 - Hybrid
- How can we measure the benefits of cross covariances?
- Is it too early for WGNE to get involved ?

Coupled DA intercomparison

- Is there a common benefit of weakly coupled DA among centres?
- Can we design a set of experiments that isolate the impact of couplings vs other changes/differences?
- Is there evidence of biases in one component impacting other components ?

% Difference (N3	20 cpl :bp988 vs.
PS43 N320 uncpl std:u	-bk932) - overall 1.49%
MSE against observations	for 20190615 to 20190903

								0.0	10.0	<u>.</u>								_		_	
NH_PMSL	Г		1						4						surf	NH_PMSL					Ī
NH_W250	E														AMDARS	NH W250					
NH_W500															sondes	NH_W500	1.0				
NH W850	11														Satwind	NH_W850				10	1
NH W10m															surf	NH W10m	1.0				i
NH T250	17	10				5									sondes	NH T250		1		201	l
NH T500	Ð			1.											sondes	NH T500					į
NH T850	1	10	-			1									sondes	NH T850					6
NH T 2m	12		1	1		1		1					-		surf	NH T 2m	1.0	1	1		1
NH 7250							-	-	-	~	•	-	~	-	condes	NH 2250	1.1		1	2	f
NH 7500	P	-0.	2	-	-	10									sondes	NH 7500	10	-			
NH 7850	Ŀ									÷		٥.	0		sondes	NH 7850					
TD 10/260	1		1	1		1	•	1	•	۰	۰	۰	1	•	songes	TD W350					
TD 14500	1.						•	•	•	٠	٠	٠	.*:	*	AMDARS	TD W500	100			1	1
TR W300	Ľ								*	*	•	•	.*		sondes	TR WS00		٠	٠	•	1
TR_W850		1.	1		1	.*	1			*	2	*	1		Satwind	TR W850	1.1		18		2
TR WIOM						٠	A			4	A		٠		surf	IR WIOM		٠	٠		1
18_1250	1						.4			A.					sondes	TR_1250					1
TR_1500	Ŀ.											1			sondes	TR_TS00	12		+		1
TR_T850	1				٠					٠	+				sondes	TR_T850					
TR_T_2m	4		٨	4		4	4	A	4	4	4	4	4	4	surf	TR_T_2m			*	۳	2
SH_PMSL	13	•	.*	•			4	٠		1	*				surf	SH_PMSL		•			1
SH_W250	1						1						÷.,		AMDARS	SH_W250					1
SH_W500	Ŀ.														sondes	SH_W500					ļ
SH_W850	Ð		.*												Satwind	SH_W850					
SH_W10m			1.4		٠										surf	SH_W10m	18		٠		1
SH_T250															sondes	SH_T250	1.00				
SH_T500	1.												-		sondes	SH_T500		24		12	1
SH T850	17			٠	٠						۲	۳	٧		sondes	SH T850					
SH T 2m	1.												٠		surf	SH T 2m			V	V	1
SH Z250	r										4			4	sondes	SH Z250					
SH 2500	÷														sondes	SH 2500					1
SH 2850	•							2	-	-	-				sondes	SH Z850					
Euro PMSL	t.														surf	Euro PMSL					1
Euro W250	t-					1				2	2	2		21	AMDARS	Euro W250			-	1	1
Euro W850	1.								-	-	*				Cabuind	Euro W850					1
Euro W10m										in.	ŵ	ŵ	000		Satwing	Euro W10m		100			í
Euro T250	11	1	*			•				*	*	*	*	•	surr	Euro T250		1	*	1	đ
Euro 1250	P	1		-						1	4	ŝ.			sondes	Euro T250			1		ľ
Euro 1850	1	1	1	1	0	1	1	1		¢.	٥	e.	1	ð.	sondes	Euro T 3ro		*	*	*	ĉ
Euro 7500	A		٨			۸		4	*		4	٨		*	sun	Euro 7500		*			ł
Euro_2500	1		*						-		4	4		1	sondes	Euro 2500					ļ
Euro RH 2m	4		4	4	4	٠	4		*	4	٨				surf	Euro KH Zm	14				č
UK4 T 2m			4	4		4	4	4	4	Δ	A	4	4	•	surf	UK4_T_2m		1	4	4	ļ
UK4 RH 2m	4	٨	A	4	4		4			٨	۸	٨		4	surf	UK4_RH_2m		*	4	4	ł
a per des alla de l'El Cherry	10.00						A		Δ.						surf	UKIndex T 2m					
UNINGEX 1_2m	А	-	-	-	-	-		-	-	-	_	-	-			a make a second second second					
UKIndex_RH_2m		Ā	Ā	Å	Ā	Ā	A	A	Ā	Ā	Ā			Ā	surf	UKindex_RH_2m			_		
UKIndex_RH_2m		-	2	4	1 92	-	A 0	2 1	4	4	4	4	4	1	surf	UKIndex_RH_2m	φ¢	2	2	8	1 201
UKIndex_RH_2m	1+0 P	T+6 >	+12 >	+24 .	+36 >	+48 >	+60 >	+72 >	+84	+ 96	108	120 +	132 > 1	144 >	surf	UKIndex_RH_2m	1+6 T+6	+12	+24	+36	+ 431

% Difference (N320 cpl :bp988 vs. P543 N320 uncpl std:u-bk932) - overall 0.73% RMSE against ownanal for 20190615 to 20190903

max = 20

.

.

ant anl ani an ant ani anl anl ant anl ant ani an anl ani ant AN. anl ant anl anl ani An! An) ani an anl anl anl ani ant anl ani

ani

ani ani ani

ani ani ani

ani

ani ani

Initialisation of Coupled Processes

- MJO
- Sea Breeze
- Tropical Cyclones
- Coastal Upwelling

Beyond Ocean/Atmosphere Coupled DA

- Land surface
- Vegetation
- Ocean Biogeochemistry
- Atmospheric composition
- Atmos/Ocean/Wave coupling

• Use coupling observations - eg. surface fluxes, skin SST

Coupled Perturbations

- Developing Coupled Ensembles
- How do we ensure consistent perturbations across the different models?

Summary: Potential Areas for Collaboration

- Intercomparison of Coupled Re-analyses/real-time analyses
- Coupled DA and systematic errors
- Investigate use of new observations (particularly of coupled interface)