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Types of ML for model development
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• Emulation of model functions

• Parametrization emulation

• Parametrization replacement

• Model replacement

• Elements of data assimilation

• [Post processing – see hidden slides]

Increasing risk & 

potential benefit



Emulation of model functions



Numerical weather forecasts: To precondition the linear solver

• Linear solvers are important to build efficient semi-implicit time-stepping schemes for atmosphere and ocean models.

• However, the solvers are expensive.

• The solver efficiency depends critically on the preconditioner that is approximating the inverse of a large matrix. 

Can we use machine learning for preconditioning, predict the inverse of the matrix and reduce the number of 

iterations that are required for the solver?

Testbed: A global shallow water model at 5 degree resolution but with real-world topography. 

Method: Neural networks that are trained from the model state and the tendencies of full timesteps.

No preconditioner:                                  Machine learning preconditioner:         Implicit Richardson preconditioner:

It turns out that the approach (1) is working and cheap, (2) interpretable and (3) easy to implement 

even if no preconditioner is present.

Ackmann, Dueben, Smolarkieicz and Palmer https://arxiv.org/abs/2010.02866 



Parametrization emulation & optimal parameter 
selection



Machine Learning at CMC

• Ongoing investigation of a genetic algorithm for optimal parameter 
selection in the global ensemble data assimilation system 
(manuscript submitted to Monthly Weather Review)

• Initiation of formal collaboration between CMC and Mila – Quebec AI 
Institute to investigate parameterization emulators:

• Significant resources invested under 3-year special project funding (two CMC 
researchers and two Mila researcher)

• Initial target is optimization of the Li and Barker radiation scheme using 
either full emulation or a hybrid ML-Gauss-Legendre Quadrature (QLG) 
approach
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Robust NN Emulators of Radiation Schemes
● Accurate, fast, and stable NN-based emulators of radiative 

transfer parameterizations were built using 17 years worth 
of output from 2011 version of NCEP CFS,  a fully coupled 
atmosphere-ocean-land-ice state-of-the-art climate model 
with time-varying radiative forcings, capturing diurnal, 
annual, and decadal variability, both internal and forced. 

● In the intervening decade, the atmospheric model, GFS,  
underwent a complete overhaul: dynamical core, many 
physics parameterizations, and software infrastructure were 
replaced, all other components were updated.  

● Nevertheless, radiative transfer emulators developed almost 
a decade ago are surprisingly robust  with respect to 
substantial structural and parametric change in the host 
model: when used in the AMIP-like experiment with the 
new GFS, they not only remain stable, but generate realistic 
output.  

LW and SW Heating Rates, K/day, 

averaged over 12 months AMIP-like run 

http://www.noaa.gov/marine-aviation
http://www.noaa.gov/research
http://www.noaa.gov/satellites
http://www.noaa.gov/fisheries
http://www.noaa.gov/oceans-coasts
http://www.noaa.gov/weather
https://www.commerce.gov/


Numerical weather forecasts: To emulate gravity wave drag
• Repeat the same approach for the gravity wave drag scheme of IFS

• Start with non-orographic and continue with orographic wave drag

Results for the non-orographic gravity wave drag are promising.

There is also a nice relation between network size and accuracy.

However, it is still questionable whether computational performance of the Neural Nets is better when 

compared to the conventional scheme. 

Results are not as good for the orographic gravity wave drag scheme.

The emulator was used successfully to generate tangent linear and adjoint code within data assimilation.

Chantry, Dueben, Palmer
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2020 Pilot Project: Hybrid GFS (Physical Dycore + ML physics)

HGFS HGFS

HGFS

GFS

GFSGFS

Bias = 0.74% Bias = 0.04 m/s Bias = 3.e-5 g/kg

Validation: 24 parallel runs (10-day GFS v.16 forecasts each), uniformly covering entire 2018 

In all 24 runs no signs of instability were observed!

Total Cloudiness 

(vertical mean)
U-component of wind 

(zonal mean)

Cloud condensate (zonal 

mean)

http://www.noaa.gov/marine-aviation
http://www.noaa.gov/research
http://www.noaa.gov/satellites
http://www.noaa.gov/fisheries
http://www.noaa.gov/oceans-coasts
http://www.noaa.gov/weather
https://www.commerce.gov/


Parametrization replacement





Machine Learning the Warm Rain Process
Gettelman et al 2020, in revision for JAMES
https://www.essoar.org/doi/10.1002/essoar.10503868.1

Can we do the warm rain process better?
Replace autoconversion, accretion and self collection 
Use a stochastic collection kernel from a bin code

1. Break distributions of cloud and rain into bins
2. Run stochastic collection kernel from a bin microphysics code
3. Use altered distributions to estimate AUTO+ACCRE tendency

Results:
We can change the answer in the model with the bin code. Very slow. Interesting results.
Recover speed and recover results with a neural network emulator
Embedded NN in the microphysics: maintains conservation with series of checks

Control Bin (Emulated)

Control =significant rain for all Re

Bin = Little rain for Re<15um
Bin looks like an LES model

Emulator Performance

Different than 
original model

https://www.essoar.org/doi/10.1002/essoar.10503868.1


ML/Fortran Integration Pilot Project
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Integrating trained ML components back into Fortran-based Weather and Climate codes is not trivial.

Review of current methods:

• Re-coding specific model architectures into Fortran.

• Pros: fast, good compatibility with existing Fortran codes.

• Cons: time-consuming and inflexible as changing the ML model architecture means recoding in Fortran.

• Calling Python from within Fortran (e.g. using a wrapper library such as CFFI)

• Pros: No re-coding as the ML model remains in Python.

• Cons: This approach was tried in the Met Office and we found various compatibility issues on our HPC. It is also potentially slow since Fortran 

needs to call out to Python.

• Use a Pure Fortran NN library, or bridging library (there are several existing solutions e.g. FANN, neural-fortran, FKB, 

frugally-deep)

• Pros: fast (probably), good compatibility with existing Fortran codes.

• Cons: The existing solutions only have limited architectures and algorithms available since they are either Fortran re-implementations of methods 

or APIs that mirror common ML frameworks, Translations from native ML model format are often required.

New approach: to interface directly to the underlying C/C++ libraries of the ML frameworks using Tensorflow

Lite C/C++ API



Model replacement



AI applied for Seasonal climate forecast

Summer 

2019

Winter 

2015

Autoconfigured ANN using 

Multi-Particle Collision 

Algorithm

Research developed at INPE/Brazil

Juliana Anochi, researcher at INPE

juliana.anochi@inpe.br



Data assimilation



Data assimilation: Bias-correct the forecast model in 4DVar data assimilation

• Data-assimilation blends observations and the forecast model to 

generate initial conditions for weather predictions

• During data-assimilation the model trajectory is “synchronised” with 

observations for the same weather regimes

• It is possible to learn model error when comparing the model with 

(trustworthy) observations

Two approaches:

• Learn model error within the 4DVar data-assimilation framework for 

so-called “weak-constraint 4D-Var”

• Learn model error from a direct comparison of the model trajectory 

to observations or analysis increments using deep learning

(column-based or with three-dimensional)

Benefit:

When the bias is learned, it can be used to:

• Correct for the bias during data-assimilation to improve initial 

conditions

• Correct for the bias in forecast simulations to improve predictions

(discussed controversially)

• Understand model deficiencies

Patrick Laloyaux, Massimo Bonavita and Peter Dueben @ ECMWF + Thorsten Kurth and David Matthew Hall @ NVIDIA



Deep learning the tangent linear model in 4D-Var
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The tangent linear / perturbation forecast (PF) model 

has two functions in 4D-Var data assimilation:

• To evolve a perturbation of the model state 

through the assimilation window.

• To form an adjoint for the gradient descent 

algorithm.

Creating the PF model physics components 

analytically is time consuming and difficult.

Can deep learning be used to create data-driven 

PF model components?

y y yy
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Deep learning the tangent linear model in 4D-Var
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• Training data generated by running full 

UM in pairs (1 perturbed, 1 control) for 1 

PF model time step.

• Difference between UM runs, 𝛿𝑈𝑀
1 , is used 

as ‘truth’.

• Learning target can be  𝛿𝑈𝑀
1 or…

• PF model error, 𝑃𝐹1 − 𝛿𝑈𝑀
1

• PF model can also be run in dynamics 

only mode

UM

PF

time

time

d1UM

PF1

Xa

Xb

Xa -Xb



Conclusions
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• Types of ML for model development:

• Emulation of model functions

• Parametrization emulation

• Parametrization replacement

• Model replacement

• Elements within DA also promising.

• Radiation still popular to emulate. Is it actually the best option?

• Promising work on calling ML from Fortran using C/C++ 

interface.

Increasing risk/benefit

(Probably easier wins 

near the top of the list)



Questions
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Discussion

Comprehensiveness and realism of the training data set 
used during development of AI/ML model components 
along with a synergistic collaboration between both ML 
and modeling experts are important factors contributing 
to:

○ Generalization capability of  the ML component 
and stability of the model utilizing it.

○ Ability of the ML component to remain functional 
without re-training despite changes in the host 
model.

http://www.noaa.gov/marine-aviation
http://www.noaa.gov/research
http://www.noaa.gov/satellites
http://www.noaa.gov/fisheries
http://www.noaa.gov/oceans-coasts
http://www.noaa.gov/weather
https://www.commerce.gov/
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NN Full Suite of Atmospheric Physics

Atmospheric Physics Suite
(GFS v16, C96L64):

LW Radiation,

SW Radiation,

Planetary BL, 

Orographic and convective 

gravity wave drag, 

Deep convection, 

Shallow convection, 

Microphysics,

CO2(t), trace gases,

Aerosols (tropo- and stratospheric),

O3 and H2O photochemistry

NN
522 Inputs

304 Outputs

250 Hidden Neurons 

in one hidden layer

3 times faster

Training: Data simulated by 24 10-day GFS v.16 forecasts, uniformly covering entire 2018 

(radiation was calculated at each physics time step!).

Belochitski A. and V. Krasnopolsky, 2020: Emulation of a Full Suite of 

Atmospheric Physics Parameterizations in NCEP GFS using a Neural 

Network, ECMWF-ESA Workshop on Machine Learning for Earth System 

Observation and Prediction.

http://www.noaa.gov/marine-aviation
http://www.noaa.gov/research
http://www.noaa.gov/satellites
http://www.noaa.gov/fisheries
http://www.noaa.gov/oceans-coasts
http://www.noaa.gov/weather
https://www.commerce.gov/
http://www.noaa.gov/
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Discussion

● A proof-of-concept NN emulator of an entire suite of 

atmospheric physics parameterizations in a state-of-the-art 

CGM was built using a training data set capturing diurnal and 

seasonal cycles in a year’s worth of model generated data.  The 

emulator was validated in 24 ten day forecasts with initial 

conditions spanning a full year.

● Preliminary results show that application of methodology, 

successfully used previously in development of accurate, fast, 

and stable NNs for radiative transfer, results in a stable and fast 

emulator of the entire physics suite that provides satisfactory 

accuracy of model simulation. 

http://www.noaa.gov/marine-aviation
http://www.noaa.gov/research
http://www.noaa.gov/satellites
http://www.noaa.gov/fisheries
http://www.noaa.gov/oceans-coasts
http://www.noaa.gov/weather
https://www.commerce.gov/


AI at Météo-France

• "Machine learning is being used to tune the post-processing ensemble probabilities in 
order to maximize their value for end users (see publication about thunderstorm prediction 
at doi:10.1080/16000870.2019.1696142). This approach has been applied for multi-
ensemble probabilistic forecasts of thunderstorms and rain accumulations. The algorithm is 
an optimization of observation-based forecast scores such as ROC error statistics, it is a 
complement to conventional calibration techniques."

• "It is planned to apply a data mining technique (association mining) to long archives of past 
ensemble predictions in order to detect weather regime-dependent forecasting system 
biases, such as a lack of ensemble dispersion, in order to define priorities for research on 
improving NWP systems."

• "Use of U-Net Convolutional Neural Network (CNN) for detection of meteorological 
structures out of the NWP models : bow echoes, mid-latitude fronts, tropical cyclones.



COSMO-Ru ML postprocessing at 
Hydrometcentre of Russia (RHM)

The COSMO-Ru model postprocessing is applied to t2m, td2m, PMSL, wind 10m, gusts. 

1. Bias correction (at SYNOP stations points) – in operational mode

2. Additional artificial neural network (ANN) based correction using several last forecasts (see Fig.) at 

SYNOP stations points (including up to 3 lagged forecasts) – in operational mode

The ANN processed 24-h forecast takes into
account the bias correction output for

several lead and initial time intervals (green)

3. Interpolation of correction increments (1&2) to a grid – under development

The 2017-2020 training dataset for each atmospheric parameter contains ~2×108 forecast-SYNOP 

observation pairs. ANN is trained on the direct model output for four COSMO-Ru model 

configurations with 13.2, 6.6, 2.2, 1.0km grid spacings.

Bykov, F.L. Statistical Correction of the COSMO Model Weather Forecasts Based on Neural Networks. Russ. 

Meteorol. Hydrol. 45, 141–152 (2020). https://doi.org/10.3103/S1068373920030012

https://doi.org/10.3103/S1068373920030012


Testing ML postprocessing at RHM

• The COSMO-Ru6.6-ENA ML processed forecasts 
have the accuracy close to the accuracy of raw 
forecasts with 2-4 days shorter lead time
depending on the geographical region

• The complex multimodel (MM) ML processed 
forecast takes into account COSMO-Ru6.6-ENA, 
GFS, ICON, SL-AV forecasts. The accuracy of 
MM ML forecasts is close to the accuracy of 
COSMO-Ru6.6-ENA ML processed forecast with 
~1 day shorter lead time

Testing results for t2m in Asian Russia in august 2020



PP-MILEPOST: MachIne LEarning-based 
POST-processing

Main contributors: 

IMGW-PIB (A. Mazur, G. Duniec, J. Linkowska), RHM (F. Bykov, G. Rivin, A. Bundel), MCH (D. Cattani, D. Nerini)

Plans (2020-2022):

•Review and survey of the history of ML methods and state-of-the-art in the world

•Development and testing of new methodologies for selecting an appropriate subset of predictors

•Participants collect and exchange the historical datasets of the predictors and the target values

•Explore artificial neural networks (ANN) performance optimizations for CPU/GPU

•Tuning ANN’s hyper-parameters and architectures

•Develop ML suggested package(s) to be shared among participating members


