
Review of machine 

learning activities in 

WGNE centres 
Keith Williams

WGNE34, 25/09/19

www.metoffice.gov.uk © Crown Copyright 2017, Met Office



Responses

www.metoffice.gov.uk © Crown Copyright 2017, Met Office

Responses received from 7 centres of which 5 have active work using machine learning for 

model development. Only one gave a response related to model evaluation.

In terms of model development, can be mostly split into:

1) Individual parametrization emulation (although some efforts to emulate the full model are 

in progress).

2) Optimization of model parameters.

Thank you to all who responded.



Parametrization emulation
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Fast ML Emulations of Model Physics Parameterizations
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ML for Numerical Model
• ML Applications developed & under development (red)

– Fast and accurate ML emulations of model physics

• Fast NN nonlinear wave-wave interaction for WaveWatch model
– Tolman, et al.(2005). Neural network approximations for nonlinear interactions in wind wave spectra: direct mapping for wind 

seas in deep water.  Ocean Modelling, 8, 253-278 

• Fast NN long and short wave radiation for NCEP CFS, and GFS models and for FV3GFS
– V. M. Krasnopolsky, M. S. Fox-Rabinovitz, Y. T. Hou, S. J. Lord, and A. A. Belochitski, 2010: "Accurate and Fast Neural Network 

Emulations of Model Radiation for the NCEP Coupled Climate Forecast System: Climate Simulations and Seasonal Predictions", 

Monthly Weather Review, 138, 1822-1842, doi: 10.1175/2009MWR3149.1

• Fast NN emulation of super-parameterization (CRM in MMF)
– Rasp, S., M. S. Pritchard, and P. Gentine, 2018: Deep learning to represent subgrid processes in climate models. Proceed. 

National Academy Sci., 115 (39), 9684–9689, doi:10.1073/pnas.1810286115

• Fast NN microphysics for FV3GFS and WRF

–New ML parameterization

• NN convection parameterization for GCM learned by NN from CRM simulated data
• Brenowitz, N. D., and C. S. Bretherton, 2018: Prognostic validation of a neural network unified physics parameterization. 

Geophys. Res. Lett., 35 (12), 6289–6298, doi:10.1029/2018GL078510. 

– ML emulation of simplified GCM
• Scher, S., 2018: Toward data-driven weather and climate forecasting: Approximating a simple general circulation model with deep 

learning. Geophys. Res. Lett., 45 (22), 12,616–12,622, doi:10.1029/2018GL080704. 
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Individual LWR Heating Rates Profiles

PRMSE = 0.11 & 0.06 K/day PRMSE = 0.05 & 0.04 K/day

Black – Original 

Parameterization

Red – NN with 100 neurons

Blue – NN with 150 neurons

PRMSE = 0.18 & 0.10 K/day

June 13, 2019

Profile complexity

Blue improves 

upon red



Approximation Statistics and Speedup
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NCEP CFS/GFS (L = 64)

RRTMG LWR RRTMG SWR

Statistics for

Differences in Kelvin/day

Bias 2.·10-3 5. · 10-3

RMSD 0.49 0.2

Speedup factor, η Times Averaged speedup factor:

16 

Speedup factor in cloudy 

conditions: 20

Averaged speedup factor:

60 

Speedup factor in cloudy 

conditions: 88

Note: Work in 
progress to extend 

radiation emulation 
for FV3GFS

V. M. Krasnopolsky, M. S. Fox-Rabinovitz, Y. T. Hou, S. J. Lord, and A. A. Belochitski, 2010: "Accurate and Fast Neural Network Emulations of 

Model Radiation for the NCEP Coupled Climate Forecast System: Climate Simulations and Seasonal Predictions", Monthly Weather Review, 138, 

1822-1842, doi: 10.1175/2009MWR3149.1
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CTL run 

with 

RRTMG LW 

and SW 

radiations

NN – CTL run 

differences

Differences 

between two 

control runs 

with different 

versions of 

FORTRAN 

compiler

JJA
NCEP CFS PRATE – 17 year runs

June 13, 2019

NN run with 

NN LW and 

SW 

radiations



SW direct surface fluxes

Example of SW direct 

NIR (near infra-red) 

surface fluxes

Missing data is due to 

difficulties running the 

NB configuration of 

SOCRATES

NN output is more 

accurate and less noisy 

than GA7 configuration 

compared to NB output



Offline verification

Errors w.r.t narrow band SOCTARES output

a-c: profiles of mean error (bias) and mean absolute error (MAE) for net flux and net flux divergence

d: error distribution (PDF) for LW net surface fluxes



Speed:

Is it fast (enough)?

The hard part: integrating with the UM
Embedding:

Calling Python from Fortran is a terrible 
idea!

• Why not just re-code it?

 Time consuming, inflexible

• CFFI (creates a C library which initialises
and runs Python code)

 Maybe OK for tests, probably not 

very fast

• Use Tensorflow C API directly

Approximate per-column execution times (ms) 
on different hardware
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OPTIMIZATION OF MODEL PARAMETERS

17



2019/7/1 Miyoshi AIP Monthly meeting

Courtesy of Y. Sawada (Univ. 
Tokyo/MRI JMA)

Data-driven approach to speed up Markov Chain Monte Carlo (MCMC)

External 
forcing
𝑢 𝑡
(e.g., rainfall)

(Unknown) Model’s parameter 𝜃
(e.g., hydraulic conductivity)

Hydrological model: f
𝑥 𝑡 + 1 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝜃

x: model variables 
(e.g., soil moisture, river level)

Observatio
n

𝑦𝑜

Observable 
simulated values

𝑦𝑓

Operator
𝐻

Cost function = model-observation fitting

Compare

Machine learning 
(statistical surrogate model)

Algorithm:
MCMC based on a surrogate model

1. Run a hydrological model with 400 random ensemble of 
parameters in parallel to generate 𝜃 − 𝑐𝑜𝑠𝑡 dataset.

2. Learning 𝜃 − 𝑐𝑜𝑠𝑡 dataset by Gaussian Process and construct a 
statistical surrogate model 𝑔 𝜃 = 𝑐𝑜𝑠𝑡
Note: 𝑔 𝜃 is much faster than a full hydrological model.

3.   Perform MCMC on 𝑔 𝜃 (106 times iteration)

If we run full 
hydrological 
model for MCMC,
4 minutes for a 
single integration
→ 𝟒 × 𝟏𝟎𝟔

minutes

Computational time ~ 10 minutes
×400000 faster!!



2019/7/1 Miyoshi AIP Monthly meeting

Skill to simulate observed brightness temperature

Random 400 draws  VS. MCMC 400 draws

External 
forcing
𝑢 𝑡
(e.g., rainfall)

Unknown Model’s parameter 𝜃
(e.g., hydraulic conductivity)

Hydrological model: f
𝑥 𝑡 + 1 = 𝑓 𝑥 𝑡 , 𝑢 𝑡 , 𝜃

x: model variables 
(e.g., soil moisture, river level)

Observatio
n

𝑦𝑜

Observable 
simulated values

𝑦𝑓

Operator
𝐻 Compare

MCMC improves model-
observation fitting

Courtesy of Y. Sawada (Univ. 
Tokyo/MRI JMA)



Ensemble Parameter Estimation

 The goal of this project is to identify optimal 
parameter values and physics suite 
configurations in the EnKF assimilation system

 The Ensemble Prediction and Parameter 
Estimation system (Laine et al. 2012; Jarvinen
et al 2012) is adopted:

1) Begin with a 256 different configurations 
(each member)

2) Compute CRPS (upper air) and Brier 
Scores (precipitation) of background 
forecasts within the DA system

3) Successful member remain and poor 
performers are replaced

Genetic Algorithm
 An evolutionary 

model derived from 
natural sciences 
(Goldberg and 
Holland 1988).

 Rejected members 
are replaced with re-
sampling of 
successful members 
with perturbations to 
maintain diversity

Lead:  Pieter Houtekamer (ECCC)



Ensemble Parameter Estimation

Evolution of the r
ei

distribution (red with +/- 1 standard deviation) over 20 
days of integration of the EnKF system (top).  The initial mean value is 
shown with a blue line.  The initial (blue) and final (red) distributions of the 
r
ei

parameter is shown at the bottom.

The effective radius of ice particles (r
ei
) 

provides a good example of the power of 
the genetic algorithm.

Different constants (15-35 μm range) are 
used across members with an initial mean 
of 25 μm, which evolves towards the lower 
end of the range.

This is consistent with the 15 μm value in 
the determinstic model.

The right-skewed final distribution suggests that 
unphysically small <15 μm values might be 
benificial, perhaps an indication of r

ei
acting as 

bias compensation in the model.



Composite Profile Analysis

 The goal of this project is to reduce random 
model error (error standard deviation) in the 
boundary layer

 Much of random error arises from systematic 
model biases that occur under specific 
conditions:

1) Identify dominant regional boundary 
layer archetypes in each season

2) Classify each forecast to one of these 
archetypes

3) Assess forecast error by archetype

Self Organizing Maps
 Unsupervised 

learning from 
reanalyses

 Forecast 
classification

Hierarchical Cluster 
Analysis

 Synthesis of SOM 
codes (Herrero and 
Dopazo 2002)

Lead:  Ron McTaggart-Cowan (ECCC)



Composite Profile Analysis

Above:  Sample 3x3 map of SOM nodes with 
corresponding codes plotted as condition profiles 
based on temperature anomaly profiles in the 
lower atmosphere over a 2.5o square region for 
Montreal winter (the full map uses 7x7 nodes).

Right:  The mean Group-1 temperature profile over 
Montreal (black), mean 24-h and 48-h forecast 
profiles for Group-1 analyses (red), and 
contribution to total winter RMSE (20% of total).  
Light and dark grey-shaded regions are significant 
at 95% and 99%, respectively.

Archetype temperature anomaly profiles for Montreal winter (left) 
as determined by SOM/HCA (top left).  A single 24 h forecast 
(heavy red) and corresponding analysis (heavy black) are shown 
against the analysis Group 1 classification (light red with shading) 
in the top-right panel.

Systematic mixing-
related errors that 

have a large 
contribution to winter 
RMSE appear when 

the profile is 
conditioned on the ML-

derived archetype:
We can fix this!



Other comments
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DWD - Machine learning activities are currently focused on postprocessing, and 

consideration for data assimilation (for data quality control and related aspects).

NOAA & ECMWF – Also using ML for initialisation and post processing.

Japan - Ito (Univ. of Tokyo) and Mouri (MRI/JMA) has developed by deep learning a surface 

layer model for wind speeds with short time scales (seconds, when Monin-Obukhov

similarity not valid). 



Conclusions
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Lots of activity going on in some centres.

In terms of model development, can be mostly split into:

1) Parametrization emulation (although some efforts to emulate the full model are in 

progress)

• Radiation has been a prime candidate but should it be (we know the right answer and our approximation is 

already well optimised for cost vs complexity. NN are easy to optimise for GPU, but radiation could also be re-

coded for GPU)

• Putting the trained NN back into the full model seems to be something that many find challenging.

2) Optimization of model parameters.


