

Developments in numerical methods (I)

WGNE-meeting, DWD, Offenbach, Germany 24-27 Sept. 2019

Michael Baldauf (DWD)

- 1. report from the ,PDEs on the sphere 2019'
- 2. Planned development at DWD

PDEs on the sphere 29 April – 03 May 2019, Montreal, Kanada

- first workshop 1990, takes place every ~18 months
- All aspects of dynamical core formulation
- Coupling between equations and with sub-grid scale parametrisations
- Parallel scaling
- Test cases
- Equation sets
- Mostly presentations about meteorology (+ 2* ocean modelling, 2* solar physics)
- presentations a 20 min. (+ several posters)
- about 70 participants (16 Can, 12 UK, 11 USA, 11 D, 6 F, ...)
- <u>http://collaboration.cmc.ec.gc.ca/science/pdes-2019/index-en.html</u>

Most prominent topics this year

mixed/compatible finite elements

(talks by Melvin, Lee, Wimmer, Shipton, Gibson, Bendall)

→ actual development at UK MO: GungHo/LFRic-project

cubed sphere, better separation between computational and science code; users desired improved conservation properties

•spectral elements (=continuous Galerkin)

(talks by Reineke, Taylor, Lauritzen)

- US Navy: Operationalisation of NEPTUNE planned for ~2025 (NH, spectral element, cubed sph.)
- E3SM (Energy Exascale Earth System Model) used by 8 DOE labs + univ. ٠ (HOMME-NH dyn core: horiz: SE, HEVI-IMEX)
 - \rightarrow mimetic horizontal differencing \rightarrow mass & energy conservation

time integration: exponential integrators

(talks by Côté, Peixoto, Gaudreault)

is a topic since years, but seems not yet used/planned for operational models

≫ Met Office

Mixed Finite Elements

Mixed Finite Element method gives

- Compatibility: $\nabla \times \nabla \varphi = 0, \nabla \cdot \nabla \times v = 0$
- Accurate balance and adjustment properties
- No orthogonality constraints on the mesh
- Flexibility of choice mesh (quads,triangles) and accuracy (polynomial order)

Thomas Melvin (UK MO)

Motivation 2 - Exponential integration with nonlinear advection

- Exponential integrators solve accurately linear problems
 - Usually allows very large timesteps

$$\begin{aligned} \frac{\partial U}{\partial t} &= LU, \quad U(0)_{I} = U_{0}, \\ U(t_{n+1}) &= e^{\Delta t L} U(t_{n}), \end{aligned}$$

- For nonlinear equations
 - Usually nonlinearity limits timestep sizes

$$\frac{dU}{dt} = LU + N(U), \quad U(0) = U_0,$$

$$U(t_{n+1}) = e^{\Delta t L} U(t_n) + e^{\Delta t L} \int_{t_n}^{t_{n+1}} e^{-(s-t_n)L} N(U(s)) ds,$$

Goal2

How to treat *N* if dominated by nonlinear advection, in way to allow large time step sizes?

P. Peixoto (Univ. Sao Paulo) ⁵

Some other statements:

- P. Lauritzen: total energy budgets
 - "Conserving total energy to within ~0.01 W/m² is considered • ,good enough' for coupled climate modeling" compare: the earths energy imbalance is ~ 1 W/m^2
 - In CAM-SE: total energy errors in the dyn. core, physics-dynamics coupling • and pressure work errors are ~-0.6 ... +0.3 W/m². Local erros can be an order of magnitude larger (at least).
- Xi Chen:

grid-staggering becomes increasingly less important for higher-order methods

A possible alternative dynamical core for ICON based on **Discontinuous Galerkin Discretisation**

Michael Baldauf (Deutscher Wetterdienst)

7

Discontinuous Galerkin (DG) methods in a nutshell

 $dx v(\mathbf{x})$

$$\frac{\partial q^{(k)}}{\partial t} + \nabla \cdot \mathbf{f}^{(k)}(q) = S^{(k)}(q), \qquad k = 1, ..., K$$

weak formulation

Finite-element ingredient

Finite-volume ingredient

$$q^{(k)}(x,t) = \sum_{l=0}^{p} q_{j,l}^{(k)}(t) \ p_l(x - x_j)$$

e.g. Legendre-Polynomials

From Nair et al. (2011) in ,Numerical techniques for global atm. models'

e.g.

Cockburn, Shu (1989) Math. Comput. Cockburn et al. (1989) JCP Hesthaven, Warburton (2008): Nodal DG Methods

$$\mathbf{f}(q) \to \mathbf{f}^{num}(q^+, q^-) = \frac{1}{2} \left(\mathbf{f}(q^+) + \mathbf{f}(q^-) - \alpha(q^+ - q^-) \right)$$

Lax-Friedrichs flux

Gaussian quadrature for the integrals of the weak formulation

 \rightarrow ODE-system for $q^{(k)}_{il}$

DG – Pros and Cons

local conservation

- any order of convergence possible
- flexible application on unstructured grids (also dynamic adaptation is possible, h-/p-adaptivity)
- very good scalability
- **explicit** schemes are easy to build and are quite well understood
- higher accuracy helps to avoid several awkward approaches of standard 2nd order schemes: staggered grids (on triangles/hexagons, vertically heavily stretched), numerical hydrostatic balancing, grid imprints by pentagon points or along cubed sphere lines,

- high computational costs due to
 - (apparently) small Courant numbers
 - higher number of DOFs
- **well-balancing** (hydrostatic, perhaps also geostrophic?) in Euler equations is an issue (can be solved!)
- basically ,only' an A-grid-method, however, the ,spurious pressure mode' is very selectively damped!

Target system: ICON model

(Zängl et al. (2015) QJRMS)

- operational at DWD since Jan. 2015 (global (13km) and nest over Europe (6.5km))
- convection-permitting (2.2km): Q4/2020

- horiz.: icosahedral triangle C-grid, vertic.: Lorenz-grid
- non-hydrostatic, compressible
- mixed finite-volume / finite-difference (mass, tracer mass conservation)
- predictor-corrector time-integration \rightarrow overall 2nd order discretization

but currently far away from this, only a toy model for 2D problems exists with:

- explicit time integration DG-RK (with Runge-Kutta schemes) or horizontally explicit-vertically implicit (DG-HEVI) (with IMEX-Runge-Kutta)
- ,local DG' (LDG) option for PDEs with higher spatial derivatives
- use of a triangle grid (also on the sphere) is optional

Test case: falling cold bubble

Testsetup by Straka et al (1993)

Test properties:

- test of dry Euler equations (without Coriolis force)
- unstationary
- strongly nonlinear
- comparison with reference solution from paper

Linear gravity/sound wave expansion in a channel

Deutscher Wetterdienst Wetter und Klima aus einer Hand

M. Baldauf (DWD)

Horizontally explicit - vertically implicit (HEVI)-scheme with DG

Motivation: get rid of the strong time step restriction by vertical sound wave expansion in flat grid cells (in particular near the ground)

$$\frac{\partial q^{(s)}}{\partial t} + \underbrace{\nabla \cdot \mathbf{f}_{slow}^{(s)}}_{\text{explicit}} + \underbrace{\nabla \cdot \mathbf{f}_{fast}^{(s)}}_{\text{implicit}} = S_{slow}^{(s)} + \underbrace{S_{fast}^{(s)}}_{\text{fast}} \qquad \mathbf{f}_{fast}^{(s)} = f_{z,fast}^{(s)} \mathbf{e}_{z}$$

$$f_{z,fast}^{(s)} = \sum_{s'} H^{ss'} q^{(s')}$$

- Use of IMEX-RK (SDIRK) schemes: SSP3(3,3,2), SSP3(4,3,3) (*Pareschi, Russo (2005) JSC*)
- The implicit part leads to several band diagonal matrices
 → here a direct solver is used (expensive!)

References:

Giraldo et al. (2010) SIAM JSC: propose a HEVI semi-implicit scheme *Bao, Klöfkorn, Nair (2015) MWR:* use of an iterative solver for HEVI-DG *Blaise et al. (2016) IJNMF*: use of IMEX-RK schemes in HEVI-DG *Abdi et al. (2017) arXiv:* use of multi-step or multi-stage IMEX for HEVI-DG

Test case: falling cold bubble (Straka et al. (1993)

Comparison explicit vs. HEVI scheme

How to bring DG on the sphere ...

Idea to avoid pole problem and to keep high order discretization: use **local (rotated) coordinates** for every (triangle) grid cell,

- i.e. rotate every grid cell towards $\lambda \approx 0$, $\phi \approx 0$.
- \rightarrow geometry is treated exactly
- \rightarrow transform fluxes between neighbouring cells

shallow water equations covariant formulation (here: without bathymetry)

$$\begin{aligned} \frac{\partial \sqrt{G}H}{\partial t} + \frac{\partial}{\partial x^{i}} \sqrt{G}m^{i} &= 0\\ \frac{\partial \sqrt{G}m^{i}}{\partial t} + \frac{\partial}{\partial x^{j}} \sqrt{G}T^{ij} &= \sqrt{G}(F_{Cor}^{i} - \Gamma_{jk}^{i}T^{jk})\\ T^{ij} &= \frac{m^{i}m^{j}}{H} + \frac{1}{2}g^{ij}g_{grav}H^{2} \end{aligned}$$

Barotropic instability test

Galewsky et al. (2004)

4th order DG scheme

without additional diffusion $dx \sim 67$ km, dt=15 sec.

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Barotropic instability test Galewsky et al. (2004)

4th order DG scheme without additional diffusion $dx \sim 67$ km, dt=15 sec.

relVort:

GrADS: COLA/IGES

Fig. 4 from Galewsky et al. (2004)

Linear inertial-gravity wave

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Solution after 14 days ~ 100 periods

4th order DG scheme

without additional diffusion dx~134 km, dt=30 sec.

 \rightarrow wave pattern remains stable

Analytic solution by Shamir, Paldor (2016), Paldor (2013) (is known to be slightly too fast by ~0.3% ~0.3 wavelengths) This test case might possibly replace the well-known 'Rossby-Haurwitz wave test' in the future.

Summary

- 2D toy model for
 - explicit DG-RK (on arbitrary unstructured grids with triangle or quadrilateral grid cells) and

- HEVI DG-IMEX-RK

works for several idealized tests (also Euler equations with terrain-following coordinates), correct convergence behaviour, ...

• **DG on the sphere** by use of local (rotated gnomonial) coordinates

Outlook

- further design decisions: nodal vs. modal, local DG vs. interior penalty vs. ..., ..
- coupling of tracer advection (mass-consistency)?
- improve **efficiency** in the HEVI direct solver
- further **milestones** (for the next years!)
 - development of a 3D prototype DG-HEVI solver
 - choose optimal convergence order *p* and grid spacing estimated: *p*_{horiz} ~ 3 ... 6, *p*_{vert} ~ 3 ... 4 (*p*_{time} ~ 3...4)

Announcement:

The next

"Partial differential equations on the sphere" – workshop

will take place at DWD, Offenbach, Germany 5-9 October 2020

