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variations
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Uncertainty in carbon cycle projections (>300 ppm) is comparable to differences

across socio-economic scenarios.

AR5 WG1 SPM:

“‘Based on ESMs, there is
high confidence that the
feedback between climate
and the carbon cycle is
positive in the 21st century.”

CMIP5
» >40 climate models (AOGCM)
* 10 ESMs (i.e. with BGC components)
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GC: Carbon Feedbacks in the Climate System

Objective: to understand how biogeochemical cycles and feedbacks
control CO, concentrations and impact on the climate system
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GC: Carbon Feedbacks in the Climate System

Objective: to understand how biogeochemical cycles and feedbacks
control CO, concentrations and impact on the climate system

Guiding questions:

1.
2.

What are the drivers of land and ocean carbon sinks?

What is the potential for amplification of climate change over the 21st
century via climate-carbon cycle feedbacks?

How do greenhouse gases fluxes from highly vulnerable carbon
reservoirs respond to changing climate (including climate extremes and
abrupt changes)?

llyina T. and Friedlingstein P. 2016: White Paper on WCRP Grand Challenge



GC: Carbon Feedbacks in the Climate System

Kick-off workshop (Hamburg, Nov. 2017)

Processes on Land
* CO, fertilisation and role of nutrients
« Carbon turnover time and response to climate change Gaton Feadsecks i the Cilnte Sysin
Processes in the Ocean
« Ocean mixing, stratification and carbon uptake
« Biological pump and carbon export
Learning from existing records
* New ocean products for comprehensive spatio-temporal
« variability
» Synthesis of surface and satellite measurements as well
* as manipulative experiments
* Focus on interannual to decadal variability not just mean
Improving projections
« Extended climate-carbon feedback framework
» Decadal prediction of the carbon cycle

21 - 22 November 2016, Hamburg, Germany




Air-sea flux anomaly (PgC yr)

What are the drivers of the land ocean carbon sink?

key mechanisms are identified, but with large uncertainties regarding

Ocean: their strength and multi-year variability

Southern Ocean is responsible for about half
of the ocean carbon sink and dominates its
multi-year variability

Observations
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Air-sea flux anomaly (PgC yr)

What are the drivers of the land ocean carbon sink?

key mechanisms are identified, but with large uncertainties regarding

Ocean: . : L
their strength and multi-year variability
Southern Ocean is responsible for about half Poor understanding of origins of variability,
of the ocean carbon sink and dominates its e.g. due to uncertain relative contribution of
multi-year variability biological vs. physical processes
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Land:

Fair global agreement between land carbon models
and estimate from global carbon budget
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What are the drivers of the land ocean carbon sink?

the main barriers relate to understanding of the actual processes

driving the sinks

= —_ Now s W,
T T T T

-1k

But large uncertainty at the process level,

e.g.

T T T T T T
s ® Land sink Multi-model mean
&
‘ ‘196I0 197‘0 195;0 190‘0 20(;0 201‘0 202‘0
LeQuéré et al., ESSD, 2018 Zaehle et al.,

plant response to CO, increase

607 (c) Duke FACE

40 -

20

0

NPP response (%)

_20_I T T T T
1996 1998 2000 2§02 2004 20
Observations

New Phyt., 2014 Models



What is the potential for amplification of climate change over
the 21st century via climate-carbon cycle feedbacks?

How changes in climate, ocean circulation, and biogeochemical mechanisms

Ocean: will affect the ocean’s capacity to sequester carbon?

ESMs with overestimated seasonal C-uptake
project larger future C-uptake in the South. Ocean

Future vs. Present 35-75S CO2 Sink
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What is the potential for amplification of climate change over
the 21st century via climate-carbon cycle feedbacks?

How changes in climate, ocean circulation, and biogeochemical mechanisms

Ocean: . : .
will affect the ocean’s capacity to sequester carbon?
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What is the potential for amplification of climate change over
the 21st century via climate-carbon cycle feedbacks?

How changes in climate, atmospheric composition, land use will affect the land’s

Land: .
capacity to sequester carbon?
Future land sink in RCP scenario very uncertain. Large uncertainty on land carbon
Not even sure about the sign ! response to CO, () and climate (y)
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Uncertainty in near-term CO, changes

Near-term changes in emissions may not be detectable
in atmospheric CO, observations over several years
due to natural variability and process uncertainty
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Implications for climate projections

Large uncertainty in CO, emissions compatible with a given climate target

Budget for the 2° C target is about 700GtC to 1300GtC.
Given 550 GtC emitted so far, that's 15 to 75 years of current
emissions.
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AR5 WG1 SPM:

“Cumulative total emissions of
CO, and global mean surface 0 500 1000 1500 2000 2500
tempe ratu re response are Cumulative total anthropogenic CO, emissions from 1870 (GtC)
approximately linearly related.

Any given level of warming is

associated with a range of Rogelj et al. Nature, 2019
cumulative CO, emissions.” Matthews et al. in prep.




Relationship between the TCRE and the total and remaining
carbon budgets
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Transient climate response to cumulative carbon emissions

TCRE=a/ (1 + B + a*y)

TCRE (K/1000 GtC) High TCRE implies
#e lower emissions
allowed

l  Stems mainly from
15 l high climate
sensitivity
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P. Friedlingstein, C. Jones, et al., in prep.



» most feedbacks known (or suspected) for decades
no or little direct observations

» basic or insufficient understanding of processes

* uncertain magnitude

Carbon cycle feedbacks

Observed globally averaged combined land and ocean

Atmospheric CO, surface temperature anomaly 1850-2012
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Process-oriented climate-carbon cycle feedback framework

« Current B/y framework (Friedlingstein et al., 2006) is
scenario dependent, based only on global temperature,
ignores different time-scales, and regional responses.

« A process-oriented climate-carbon cycle feedback
framework has been developed at the GC workshop:

Extending the
Climate-Carbon
Cycle

Feedback Framework

25 - 27 April 2018
University of Bern, Switzerland

« Determine sources of uncertainty to analyse where the
uncertainty stems from

Vivek Arora, et al., in prep.



Gaps in coupling between ESM components

Anthropogenic
trace gases emissions

* Including atmospheric chemistry of
| CH, and N,O for interactive gas
impac cycles in ESMs
* Improving representation of
. | viide 5 aerosol-cloud interactions (e.g.
mpacts A\ impacts cloud microphysics, aerosols

/ \ radiative properties)
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Summary

Challenges in projecting climate-carbon cycle interactions and
feedbacks are associated with knowledge gaps in process
understanding and with the role of multi-year variability.

Opportunities arise from the development of new comprehensive
observational products, hybrid modeling using ML, process-
oriented experiments, large ensembles, initialized prediction
systems, high resolution model.

Improving coupling between existing components will enable the
full spectrum of climate-relevant interactions within the Earth
system.



