Longer time scale ESM components:

Challenges and Opportunities in Carbon Cycle and Chemistry

Tatiana Ilyina Max Planck Institute for Meteorology

WGNE34 Meeting, 25 September 2019

Outline

1. Guiding questions in the context of the WCRP GC-Carbon

2. Uncertainties in near-term CO₂ variations

3. Uncertainties in TCRE and remaining carbon budget

Uncertainty in carbon cycle projections (>300 ppm) is comparable to differences across socio-economic scenarios.

AR5 WG1 SPM:

"Based on ESMs, there is *high confidence* that the feedback between climate and the carbon cycle is positive in the 21st century."

CMIP5

- >40 climate models (AOGCM)
- 10 ESMs (i.e. with BGC components)

GC: Carbon Feedbacks in the Climate System

Objective: to understand how biogeochemical cycles and feedbacks control CO_2 concentrations and impact on the climate system

Ilyina T. and Friedlingstein P. 2016: White Paper on WCRP Grand Challenge

GC: Carbon Feedbacks in the Climate System

Objective: to understand how biogeochemical cycles and feedbacks control CO₂ concentrations and impact on the climate system

Guiding questions:

- 1. What are the drivers of land and ocean carbon sinks?
- 2. What is the potential for amplification of climate change over the 21st century via climate-carbon cycle feedbacks?
- 3. How do greenhouse gases fluxes from highly vulnerable carbon reservoirs respond to changing climate (including climate extremes and abrupt changes)?

GC: Carbon Feedbacks in the Climate System

Kick-off workshop (Hamburg, Nov. 2017)

Processes on Land

- CO₂ fertilisation and role of nutrients
- Carbon turnover time and response to climate change

Processes in the Ocean

- Ocean mixing, stratification and carbon uptake
- Biological pump and carbon export

Learning from existing records

- New ocean products for comprehensive spatio-temporal
- variability
- Synthesis of surface and satellite measurements as well
- as manipulative experiments
- Focus on interannual to decadal variability not just mean

Improving projections

- Extended climate-carbon feedback framework
- Decadal prediction of the carbon cycle

What are the drivers of the land ocean carbon sink?

Ocean:

key mechanisms are identified, but with large uncertainties regarding their strength and multi-year variability

Southern Ocean is responsible for about half of the ocean carbon sink and dominates its multi-year variability

What are the drivers of the land ocean carbon sink?

Ocean:

key mechanisms are identified, but with large uncertainties regarding their strength and multi-year variability

Southern Ocean is responsible for about half of the ocean carbon sink and dominates its multi-year variability Poor understanding of origins of variability, e.g. due to uncertain relative contribution of biological vs. physical processes

Hongmei Li and Ilyina GRL 2018

What are the drivers of the land ocean carbon sink?

Land: the main barriers relate to understanding of the actual processes driving the sinks

Fair global agreement between land carbon models and estimate from global carbon budget

But large uncertainty at the process level, e.g. plant response to CO₂ increase

What is the potential for amplification of climate change over the 21st century via climate-carbon cycle feedbacks?

Ocean: How changes in climate, ocean circulation, and biogeochemical mechanisms will affect the ocean's capacity to sequester carbon?

ESMs with overestimated seasonal C-uptake project larger future C-uptake in the South. Ocean

What is the potential for amplification of climate change over the 21st century via climate-carbon cycle feedbacks?

Ocean: How changes in climate, ocean circulation, and biogeochemical mechanisms will affect the ocean's capacity to sequester carbon?

What is the potential for amplification of climate change over the 21st century via climate-carbon cycle feedbacks?

Land: How changes in climate, atmospheric composition, land use will affect the land's capacity to sequester carbon?

Large uncertainty on land carbon response to CO_2 (β) and climate (γ)

Uncertainty in near-term CO₂ changes

Near-term changes in emissions may not be detectable in atmospheric CO₂ observations over several years due to natural variability and process uncertainty

Peters et al., Nature Climate Change 2017

Near-term predictability horizons for CO₂ fluxes in a multi-model framework

- \triangle Observational product (only for air-sea CO₂ flux)
- O Global Carbon Budget estimates
- □ ESM assimilation simulation

Predictability of 2-3 years is expected in initialized ESM-based prediction systems for CO₂ fluxes and variations in atmospheric CO₂ growth rate

Implications for climate projections

Large uncertainty in CO₂ emissions compatible with a given climate target

Budget for the 2° C target is about 700GtC to 1300GtC. Given 550 GtC emitted so far, that's 15 to 75 years of current emissions.

AR5 WG1 SPM:

"Cumulative total emissions of CO_2 and global mean surface temperature response are approximately linearly related. Any given level of warming is associated with a range of cumulative CO_2 emissions."

Rogelj et al. Nature, 2019 Matthews et al. in prep.

Relationship between the TCRE and the total and remaining carbon budgets

Uncertainty in the remaining budget [GtCO2]

Matthews et al. in prep. Rogelj et al. Nature, 2019

Transient climate response to cumulative carbon emissions

TCRE = $\alpha / (1 + \beta + \alpha^* \gamma)$

- High TCRE implies lower emissions allowed
- Stems mainly from high climate sensitivity

P. Friedlingstein, C. Jones, et al., in prep.

Carbon cycle feedbacks

- most feedbacks known (or suspected) for decades
- no or little direct observations
- basic or insufficient understanding of processes
- uncertain magnitude

 $\beta: \text{concentration carbon cycle feedback} - \textbf{Negative Feedback} \\ \gamma: \text{climate carbon cycle feedback} - \textbf{Positive Feedback}$

Process-oriented climate-carbon cycle feedback framework

- Current β/γ framework (Friedlingstein et al., 2006) is scenario dependent, based only on global temperature, ignores different time-scales, and regional responses.
- A process-oriented climate-carbon cycle feedback framework has been developed at the GC workshop:

• Determine sources of uncertainty to analyse where the uncertainty stems from

Vivek Arora, et al., in prep.

Gaps in coupling between ESM components

- Including atmospheric chemistry of CH_4 and N_2O for interactive gas cycles in ESMs
- Improving representation of aerosol-cloud interactions (e.g. cloud microphysics, aerosols radiative properties)

Summary

- Challenges in projecting climate-carbon cycle interactions and feedbacks are associated with knowledge gaps in process understanding and with the role of multi-year variability.
- Opportunities arise from the development of new comprehensive observational products, hybrid modeling using ML, processoriented experiments, large ensembles, initialized prediction systems, high resolution model.
- Improving coupling between existing components will enable the full spectrum of climate-relevant interactions within the Earth system.