Surface Flux Intercomparision: WGNE34 Phase 1 Update

François Bouyssel, Météo-France Carolyn Reynolds, Naval Research Laboratory

Motivation: Biases in surface fluxes were identified as an important and widespread issue during the WGNE Workshop on Systematic Errors 2017 and the PAN-WRCP and WGNE32 meeting in Exeter in October 2017. Recommendations from WGNE WSE-2017 included setting up a group to look at surface flux errors, and considering a cross weather-climate group looking at initial tendency analysis of common biases.

Progress:

- With feedback from WGNE members, CLIVAR/GSOP, GEWEX, and GLASS protocol was finalized and sent out to WCRP modeling group members in Feb 2019.
- Data collected and archived at Météo-France (original deadline of 1 June pushed to 1 July).
- 10 centers have participated (CMA, CPTEC, DWD, ECCC, ECMWF, MF, NCEP, NRL, RU, UKMO)

Surface Flux Intercomparision: Phase 1 Draft Protocol

1. Grid

All fields must be provided on a regular latitude – longitude grid at a grid spacing of 0.25° x 0.25°. CF compliant NetCDF format (http://cfconventions.org/) is recommended, but GRIB format is also accepted. Phase II may consider regional models

2. Initial time and forecast ranges

The aim is to compare surface fluxes in operational forecasts. Operational forecasts must start at 00 UTC.

The forecasts should be provided for July 2018 and January 2019 with the current operational model version. It is also possible to provide additional data from an experimental suite.

For accumulated values (where the accumulation starts at the 0-h forecast) and for instantaneous values (which are valid at the given forecast range) the following forecast ranges have to be provided: +6h, +12h, +18h, +24h and every 6 hours to +120h

Each forecast range has to be in a separate file.

3. List of constant fields (to be provided only for the 0-h forecast range)

Name	Variable	Unit
ORO	Model orography (geometric height above msl)	m
LSM	Land sea mask (1: land, 0: water/sea ice)	Fraction

4. List of instantaneous variables

Name	Variable			
SEAICE	Sea ice concentration (1: sea ice, 0: open water)			
T_Skin	Sea surface temperature or land surface temperature			
W_SNOW	Water equivalent of accumulated snow depth			
U_10M	Zonal wind component at 10 m above surface			
V_10M	Meridional wind component at 10 m above surface			
T_2M	Temperature at 2 m above surface			
Q_2M	Specific humidity at 2 m above surface			
TD_2M	Dew point temperature at 2m above surface	К		

Surface Flux Intercomparision: Phase 1 Draft Protocol

3. List of accumulated Variables (from the start of the forecast)

Name	Variable	Unit
LS_PREC	Cumulative large-scale precipitation (total) flux at surface	kg/m²
CO_PREC	Cumulative convective precipitation (total) flux at surface	kg/m²
LS_SNOW	Cumulative large-scale snowfall (solid) flux at surface if available	kg/m²
CO_SNOW	SNOW Cumulative convective snowfall (solid) flux at surface if available	
EVAP	Cumulative total evaporation flux at surface	
SO_DOWN	Cumulative downward short-wave radiation flux at surface	W m ⁻² s
SO_NET	_NET Cumulative net short-wave radiation flux at surface	
SO_NET_CS	Cumulative net short-wave clear sky radiation flux at surface if available	W m ⁻² s
TH_DOWN	Cumulative downward long-wave radiation flux at the surface	W m ⁻² s
TH_NET	Cumulative net long-wave radiation flux at the surface	
TH_NET_CS	Cumulative net long-wave clear sky radiation flux at the surface if available	
SH	Cumulative surface sensible heat flux	
LH	Cumulative surface latent heat flux	
U_MOM_FL	FL Zonal cumulative momentum flux (sum of all parameterized fluxes)	
V_MOM_FL	M_FL Meridional cumulative momentum flux (sum of all parameterized fluxes) k	

Database

	Contact person	Data format	Comments
СМА	Jian Sun	NetCDF	No 'LS_SNOW', 'CO_SNOW', 'TH_NET_CS', 'U_MOM_FL', 'V_MOM_FL' EVAP, SH, LH opposite sign
CPTEC	Ariane Frassoni		Dataset to be provided
DWD	Günther Zängl	NetCDF	
ECCC	Ron McTaggart-Cowan	NetCDF	2 datasets provided (oper + new) U_MOM_FL, V_MOM_FL opposite sign
ECMWF	Souhail Boussetta	GRIB	
MF	François Bouyssel	GRIB	
NCEP	Weizhong Zheng	NetCDF	No 'LS_SNOW', 'CO_SNOW', 'SO_NET_CS', 'TH_NET_CS'
NRL	Carolyn Reynolds	NetCDF	No 'SO_NET_CS', 'TH_NET_CS' EVAP, SH, LH opposite sign
RU	Mikhail Tolstykh	NetCDF	No 'EVAP', 'SO_NET_CS', 'TH_NET_CS'
UKMO	Paul Earnshaw	NetCDF	No 'SO_NET', 'TH_NET', 'SO_NET_CS', 'TH_NET_CS', 'U_MOM_FL', 'V_MOM_FL' U10, V10 inverse

Name of the server: ftp.umr-cnrm.fr Each participant was given a personal login/passwd to connect and upload its data in a specific directory. Volume : about 1.5 Tb Descibility to open the pescibility to described data if decided

Possibility to open the possibility to download data, if decided

Database

Quality control and homogenization on-going on datasets:

- Bugs correction, Sign convention, Instantaneous instead of accumulated fluxes, etc.

July 2018

Surface Flux Intercomparision: Phase 1 Draft Protocol

Next Steps:

- Continue analysis of dataset
- Verification
 - Engage WCRP Surface Flux Task Team white paper on surface flux observations: <u>https://www.wcrp-climate.org/JSC40/12.1(a).%20WDAC%20SurfaceFluxWhitePaper.pdf</u>
 - IMET mooring of NW coast of Australia (by CISRO and Chinese researchers), in addition to RAMA and TAO moorings
 - Engage with GASS and GLASS on verification