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Predicting weather and climate: Why is it so hard?

Earth as seen from Apollo 17

The Earth System is complex, huge and chaotic and we do not have sufficient resolution
to resolve all important processes.

Use cases for machine learning are all over the place...
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Deep learning for weather and climate
The Earth System has many components that show non-linear dynamics, we have plenty
of observations and often need to apply rough approximations to formulate our models.

www.wikipedia.org

I Neural Networks learn from input/output pairs.
I Neurons have weighted connections to each other and the weights are trained to

produce the optimal results.

Neural networks can emulate non-linear systems.
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Future perspective for machine learning in weather forecasts
I Use cases in quality control and automated alarm systems

weather data monitoring, model and data assimilation systems, real-time quality control for observational data, interpret anomalies and guide

quality assignment and decision making

I Use cases in data assimilation and use of observations
derive information on the governing differential equations, non-linear bias correction, bias predictors, operational operators, define optical

properties of hydrometeors and aerosols

I Use cases in numerical modelling
emulate model components, develop improved parametrisation schemes, provide better error models, learn the underlying equations of

motion, generate tangent linear or adjoint code from machine learning emulators)

I Use cases in forecast and climate reanalysis outputs post-processing
real time adjustments of forecast products, feature detection, uncertainty quantification, error corrections for seasonal predictions,

development of low-complexity models, plenty of business opportunities

I Changes of the infrastructure will be required
different use of data, data mining and data fusion; more/larger data requests; need for use of deep learning hardware; user products within the

forecast model

The next slides: I will show example applications and discuss challenges.
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To learn the equations

Neural networks enable us to learn complex non-linear dynamics as a black box.

We could base the entire model on Neural Networks.
Who needs Navier Stokes?

I We know the equations of motion but we cannot solve them.

I Discretisation and sub-grid-scale variability generates significant errors.

I The data handling system of ECMWF provides access to over 210 petabyte of
primary data and the data archive of ECMWF grows by about 233 terabyte per day.
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Global weather forecast based on Neural Networks

I Retrieve hourly data of geopotential height at 500 hPa from ERA5 re-analysis for
training (> 65000 global data sets).

I Map the data to a coarse lon/lat grid (60x31).

I Use the state of the model at timestep i as input and the state of the model at
timestep i + 1 as output.

I Use a 9× 9 stencil around the grid point that should be predicted.

I Add time of day and year as well as the coordination of a gridpoint (lon+lat) as input
variables to the network.

I The Pole needs special treatment.
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Global weather forecast based on Neural Networks

The Neural Network model can compete with a dynamical model of similar complexity.

Dueben and Bauer GMD 2018
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Global weather forecast based on Neural Networks

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

24 hours; Analysis

470 480 495 510 525 540 555 570 585 600

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

24 hours; Local Neural Network

470 480 495 510 525 540 555 570 585 600

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

24 hours; Analysis

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°N

10°S

20°S

30°S

40°S

50°S

60°S

70°S

80°S

10°N

20°N

30°N

40°N

50°N

60°N

70°N

80°N

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

0°E20°W40°W60°W80°W100°W120°W140°W160°W 20°E 40°E 60°E 80°E 100°E 120°E 140°E 160°E

24 hours; Local Neural Network

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

The simulations show reasonable dynamics.

Just adding further inputs does not necessarily help.

Model runs crash after a couple of weeks.
Dueben and Bauer GMD 2018
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Global weather forecast based on Neural Networks
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Improve post-processing
Ensemble simulations are important but expensive.

Use 3D fields of a small number of ensemble members as inputs and try to predict
ensemble spread of temperature at 850 hPa for a 24h forecast of a full 10 member
ensemble forecast for an area over Europe (40W-30E and 40N-60N).

Grönquist, Ben-Nun, Taranov, Höfler @ ETH and Dueben and Bauer @ ECMWF
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Machine learning, HPC, and weather and climate predictions

Neumann, Dueben, et al., Phil. Trans. A, 2019

Weather and climate models are high performance
computing applications:

I More resolution→ more processes resolved.

I Ratio sustained/peak is going down.

I Machine learning has a very strong impact on hardware
developments at the moment.

Can we emulate model components with neural networks?

Can we use deep learning hardware for conventional
models?
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Let’s use neural networks to emulate existing parametrisation
schemes

I Store input/output pairs of parametrisation schemes.
I Use this data to train a neural network to do the same job.
I Replace the parametrisation scheme by the neural network.

Why would you do this?

I A large fraction of the computational cost is generated by parametrisation scheme.
I Parametrisation schemes cause > 90% of model code.
I Optimization of this code is very difficult

(→ less than 5% peak performance).
I Neural Networks are highly optimized and can even use co-designed hardware.
→ Portability comes for free.

We hope that deep Neural Networks will be almost as good as the original
parametrisation schemes but much more efficient.
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A neural network emulator for the state-of-the-art model
configuration with 137 vertical levels
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Downward solar radiation at the surface for the original radiation scheme and the Neural
Network emulator.

Free-running model simulations are stable and we get a factor of O(10) speed-up for
radiation.
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A neural network emulator for the state-of-the-art model
configuration with 137 vertical levels
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A neural network emulator for gravity wave drag

Original scheme Difference Neural Network

Chantry, Dueben, Palmer.

Tendency output for the non-orographic gravity wave drag parametrisation scheme for the
standard scheme and a neural network emulator.
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Use machine learning hardware for the Legendre transform
Relative cost for model components for a non-hydrostatic model at 1.45 km resolution:

I The Legendre transform is the most expensive kernel. It consists of a large number
of standard matrix-matrix multiplications.

I If we can re-scale the input and output fields, we can use half precision arithmetic.

I Tensor Cores on NVIDIA Volta GPUs are optimised for half-precision matrix-matrix
calculations with single precision output. 7.8 TFlops for double precision vs. 125
TFlops for half precision on the Tensor Core.
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Half precision Legendre Transformations
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The simulations are using an emulator to reduce precision.
Dawson and Dueben GMD 2017
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The challenge for the machine-learning community

The time of nice pictures and videos is over...

We need to prove that machine learning tools are better than state-of-the-art within the
next two years.

We need to build useful tools that improve weather and climate predictions and/or help to
improve our understanding of the Earth System and are able to convince the conservative
weather and climate scientist.
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Why is this challenge so hard?
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Dueben, Wedi, Saarinen submitted

Top-of-the-atmosphere cloud brightness temperature [K] for satellite observations and a
simulation of the atmosphere with 1.45 km resolution.

A weather forecast simulation has O(1,000,000,000) degrees-of-freedom.

Global simulations show a breath-taking level of complexity and can represent many
details of the Earth System.
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Why is this challenge so hard?

Dueben and Palmer MWR 2015:
Single precision runs in IFS are possible and time-to-solution is reduced by 40%.
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Why is this challenge so hard?

Real-world models have a myriad of compensating errors.

You may need to run 20x10x15 days of weather forecasts or 10 years of a coupled climate
model to identify a response to a forcing...

It is really difficult to compare computational speed for machine learning and conventional
methods in a fair way.
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Questions to be answered...
There is no fundamental reasons not to use a black box within weather and climate
models. However,...

I How can we use our knowledge about the Earth System?
I How can we diagnose physical knowledge from the network?
I How can we remove a bias from neural networks and secure conservation laws?
I How can we pick hyper-parameters?
I How can we guarantee reproducibility during training?
I How can we get beyond “dense” networks but still take local properties into account?
I How can we fix interactions between model components?
I How can we interface neural networks with legacy codes and how can we use AI and

conventional methods efficiently on the same hardware?
I How can we design good training data (short time steps and high resolution)?
I How can we explore the full phase space (all weather regimes) during training?
I How can we generate large labelled datasets?
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My personal vision of the way forward...

Weather and climate
models

Deep learning

I To study known differential equations to learn how
to derive blueprints for neural network architectures.

I To learn how to scale neural networks to
O(1,000,000) inputs for 3D fields on the sphere.

I To study the representation of variability and the
correction of systematic errors for neural networks.

I To build community tools in the form of benchmark
problems.

I To focus on useful tools that can serve as beacon.

This will be hard work.

We will require machine learning solutions that are
customized to weather and climate models.
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An example: The Burgers equation
Let’s represent a non-linear system that is approximated by the Burgers’ equation:

∂u
∂t

= ν
∂2u
∂x2 − u

∂u
∂x

+ p.

The conventional approach:
∂ui

∂t
= ν

ui+1 − 2ui + ui−1

∆x2 − ui
ui+1 − ui−1

2∆x
+ c0 + c1 · ui + c2 · ui + c3 · ui · ζ.

The data-science approach:
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Conclusions

I Weather and climate models offer a large number of promising applications for
machine learning that span the entire workflow of numerical weather predictions.

I We can learn the equations of motion using deep learning and build
medium-complexity models.

I We need to develop useful tools based on machine learning within the next two years.

I We need to learn how to emulate known differential equations, represent
sub-grid-scale variability and systematic errors, and learn how to scale machine
learning solutions to O(1,000,000) input fields.

I We need benchmark datasets and beacons.

I Machine learning hardware can be used to speed-up conventional model simulations.

Many thanks for your attention.
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