

WGNE inter-comparison of Tropical Cyclone Track forecast 2017

Prepared by Kei Saitou and Shusuke Nishimoto, Presenter: Masashi Ujiie Numerical Prediction Division, Japan Meteorological Agency

STANDARD VERIFICATION

Verification of Global Models

Data Specifications in 2017

NWP centre	Year of verification commencement	Horizontal resolution of provided data (degrees in longitude and latitude)	Model resolution as of 2017	
BoM	2003	0.3516 x 0.2344	25kmL70	
СМА	2004	0.2813 x 0.2813	T _L 639L60	
СМС	1994	1.0 x 1.0	25km L80	
DWD	2000	0.25 x 0.25	13kmL90	
ECMWF	1991	0.125 x 0.125	TCo1280L137	
FRN	2004	0.5 x 0.5	T _L 1198C2.2L105	
JMA	1991	0.25 x 0.25	T _L 959L100	
KMA	2010	0.2344 x 0.1563	17kmL70	
NCEP	2003	0.5 x 0.5	T1534L64	
NRL	2006	0.5 x 0.5	T425L60	
UKMO	1991	0.2344 x 0.1563 (-Jul. 10) 0.1406 x 0.094 (Jul. 11-)	17kmL70 (-Jul. 10) 10kmL70 (Jul. 11-)	

Improvement of models for each centres in 2017 (1/2)

CMC

• 2017.11.01 introduction of two-way coupling with an ice-ocean model.

DWD

- 2016.09.28 improve physical process (convection)
- 2016.11.30 improve data assimilation method
- 2017.01.31 improve data assimilation method
- 2017.03.15 improve physical processes and start to use Meteosat-8 AMV
- 2017.05.10 improve physical processes
- 2017.09.29 start to use NCEP high-resolution SST analysis
- 2017.10.11 update weather interpretation code tables
- 2017.10.25 improve method of using observation data (SYNOP 2m RH, 10m wind)
- 2017.11.29 start to use Dual-Metop AMV

ECMWF

- 2016.11.22 improve data assimilation method, method of using observation data, and physical processes (Cycle 43r1)
- 2017.07.11 improve data assimilation method, method of using observation data, and physical processes (Cycle 43r3)

Improvement of models for each centres in 2017 (2/2)

JMA

- 2016.09.28 improve method of using typhoon bogus data
- 2016.12.15 improve method of using observation data (Himawari-8 AMV) and start to use GRACE-B/BlackJack RO data
- 2017.03.29 start to use Suomi-NPP/ATMS, Suomi-NPP/CrIS, DMSP-F17,18/SSMIS, and Meteosat-8/AMV,CSR
- 2017.05.25 improve physical processes (convection, cloud, radiation, land, sea; introduction of stratospheric methane oxidation scheme) and data assimilation system (update background error statistics)
- 2017.07.25 improve method of using observation data (GNSS RO)

NCEP

• 2017.07.19 improve physical processes (convection, boundary layer, land, sea), data assimilation system, and method of using observation data

NRL

• 2016.10 model update

UKMO

• 2017.07.11 improve horizontal resolution (from 17km to 10km)

TCs in 2017

TC season

Northern Hemisphere : 1 January 2017 to 31 December 2017

Southern Hemisphere : 1 September 2016 to 31 August 2017

Number of TCs [best track data provider]

- 27 Western North Pacific [RSMC Tokyo]
- 18 Eastern North Pacific (including Central North Pacific) [RSMC Miami, Honolulu]
- 17 North Atlantic [RSMC Miami]
- 3 North Indian Ocean [RSMC New Delhi]
- 5 South Indian Ocean [RSMC La Reunion]
- 13 Around Australia [RSMC Nadi and 4 TCWCs]

(a) Western North Pacific (WNP) Position Error

S

(a) WNP Detection Rate

M

(a) WNP AT-CT Bias (FT=72)

Visualization with "Pie-chart"

Visualization with "Pie-chart" (10 years ago)

In the backup slides, verification in other years are plotted.

: 100 % : 0%

Transition of FT=72 Position Error over Decade(s)

(a) WNP Error Map (FT=72)

(a) WNP Error Map (FT=72) Verification in 2016 2016_NWP_CMA_72_ermap 2016_NWP_CMC_72_ermap 2016_NWP_DWD_72_ermap

(b) North Atlantic (NAT)

(c) Eastern North Pacific (ENP)

Summary of verification 2017 (1/2)

- Position errors
 - Except cases of drastic changes in model characteristics, year-by-year variation is seen in the position errors.
 - Slow bias after re-curvature, a well-known common bias, is not clear in 2017.
 - Multiple year TC verification might be required if TC position errors are includes in headline scores.
 - TC position errors have decreased gradually in each region.
 - "Areas where position errors are relatively large/small" look common among centres recently.

Summary of verification 2017 (2/2)

- Intensity errors
 - Except for a few centres, global NWP systems tend to analyze and predict shallower TCs than those of the best tracks.
 - Some models tend to over-deepen TCs.
 - Model upgrades can change characteristics drastically (e.g. NCEP 2017)

TC intercomparison website will be available soon!

WGNE Intercomparison of Tropical Cyclone Track Forecasts Using Operational Global Models

Updated: 28 August 2018

NAT

Forecast Verification Verification (regional) Introduction Read Me Data Data (regional) Contact Link

Verification Result

Click on a region of the map to show a pop-up verification.

<http://nwp-verif.kishou.go.jp/wgne_tc/index.html> Login ID: verif Password: wgne2019 (beyond 26 September 2019) Contact: <u>globalnwp@naps.kishou.go.jp</u>

isua nanskehou on in/wood id/WONE TC/sub html/nen/nen whtml

ADDITIONAL VERIFICATION

Verification of Regional Models

Participants of regional models TC verif. 2017

NWP centers	Name of Model	Verification Region	Boundary	Bogus data	Model Res. as of 2017
JMA	MSM (asuca)	WNP	GSM	Used	5kmL76
KMA	RDAPS	WNP	GDAPS	Used	12kmL70
Meteo France	AROME	NAT SIO, AUR	IFS		2.5kmL90

Position errors

Intensity errors(RMSE)

Regional model verification: Summary

- Questions at the beginning of regional models TC verif. :
 - Do high-resolution regional models outperform TC forecasts to driving global models and give additional information ?
- WGNE regional model TC verif. and recent studies have answered:
 - Position: TC position performance of regional models tend to be neutral to, or worse than, those of driving global models.
 - Intensity: Regional models can outperform driving global models.
 - Other similar studies : Ito et al. (2015, Mon. Wea. Rev.), Short and Petch (2018, Mon. Wea Rev.) etc.

BACKUP SLIDES

History of the Project

- 1991 : Commencement with 3 centres: ECMWF, UKMO and JMA. The verification area was only western North Pacific (WNP).
- 1994 : CMC joined.
- **1999 : Verification for North Atlantic (NAT) started.**
- 2000 : DWD joined. Verification for eastern North Pacific (ENP) started.
- 2002 : Verification for 2 regions in the Southern Hemisphere (SIO and AUR), North Indian Ocean (NIO) and central North Pacific (CPC) started.
- **2003** : NCEP and BoM joined. A website for this project was launched.
- 2004 : Météo-France (FRN) and CMA joined.
- 2006 : CPTEC and NRL joined.
- 2011 : KMA joined.

2019 : 11 NWP centres (BoM, CMA, CMC, DWD, ECMWF, FRN, JMA, KMA, NCEP, NRL, UKMO) are now involved in the project.

AT-CT Bias

[Before, During, After] Recurvature

(a) WNP AT-CT Bias (FT=72)

(b) NAT AT-CT Bias (FT=72)

(c) ENP AT-CT Bias (FT=72)

(d) NIO AT-CT Bias (FT=72)

(e) AUR AT-CT Bias (FT=72)

(f) SIO AT-CT Bias (FT=72)

Central Pressure Scatter Diagram

Error Map

(b) NAT Error Map (FT=72)

(c) ENP Error Map (FT=72)

hotch:hPoanalysis ---- forecast

500 km

500 40

hstohihPis

300 km

(e) AUR Error Map (FT=72)

Visualization with "Pie-chart"

1808

800

810

80

CMC

0 10%

2016

JMA

CMC

気象ฅ

 12
 34
 34
 40
 60
 72

 Forecast Time pour

 NRL

 Windown Notifit Facility Term Attantic Term Attantic

 Net

40 50 72

FRN

FRN

distal write

North Adartic

detection rate

0 185

election rate

0 185

100

1000

208

608

508

208

100

Western North Pacific Eastern North Pacific North Atlantic South Indian Ocean Around Australia detection rate

²⁰¹⁴ visualization with "pie-chart"

²⁰¹³ visualization with "pie-chart"

2009

visualization with "pie-chart"

REGIONAL MODELS

Position Error of homogeneous samples(2017)

0

Position Error of homogeneous samples(2017)

Intensity RMSE of homogeneous samples(2017)

Intensity RMSE of homogeneous samples(2017)

AT-CT bias

気象庁 Japan Meteorological Agency

M