
Constraining the source of significant variation in orographic drag representation in numerical weather prediction: a model orography intercomparison and

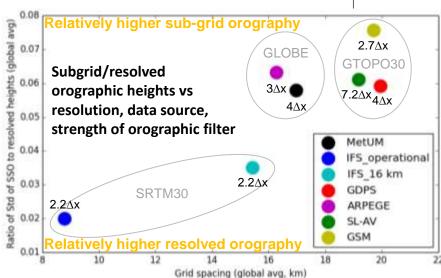
Andy Elvidge¹, Irina Sandu², Nils Wedi², Ayrton Zadra³, Simon Vosper¹, Masashi Ujiie⁴, Mikhail Tolstykh⁵, Francois Bouyssel⁶, Anton Beljaars², Souhail Boussetta², Annelize Van Niekerk¹

implications for drag parameterization

¹ Met Office, ² ECMWF, ³ Canadian Meteorological Centre, ⁴ Japan Meteorological Agency, ⁵ Russian Academy of Sciences, ⁶ Météo France

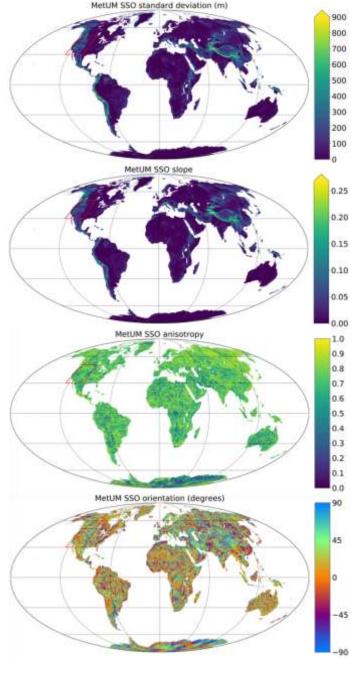
Power spectra of mean (resolved) grid box orography:

Height:

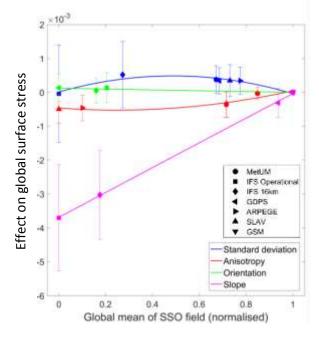

Height of subgrid-scale mountains, given by the grid-box standard deviation of subgridscale orography (SSO)

Slope:

Grid box SSO gradient

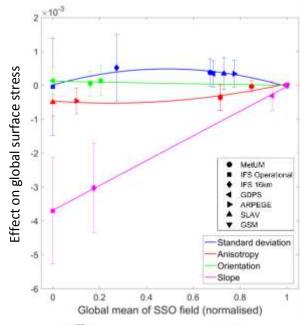

Anisotropy:

Ridge-like (0) to dome-like (1) SSO



Orientation:

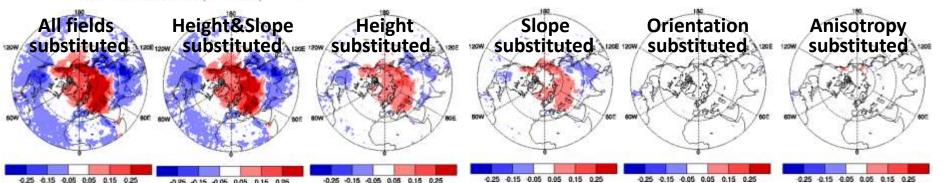
SSO ridge angle

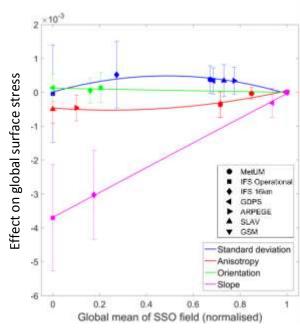


All SSO fields vary significantly across models

Offline SSO field sensitivity experiments (using Lott and Miller scheme) show:

- Global-average stress most sensitive to inter-model variability in slope, but both slope and height influential locally
- Local Froude number controls polarity and strength of drag response to variability in *height*
- Influence of anisotropy and orientation fields relatively small

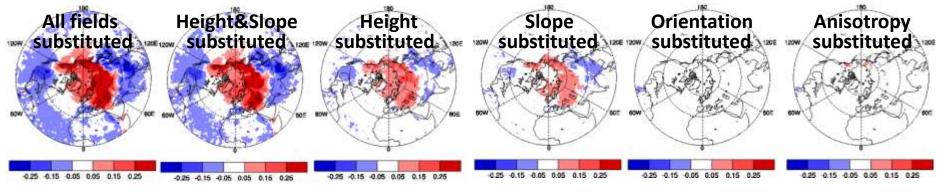



Offline SSO field sensitivity experiments (using Lott and Miller scheme) show:

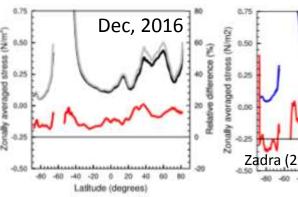
- Global-average stress most sensitive to inter-model variability in slope, but both slope and height influential locally
- Local Froude number controls polarity and strength of drag response to variability in *height*
- Influence of anisotropy and orientation fields relatively small

IFS experiments where SSO fields are substituted for MetUM SSO fields:

- Combined effect of height & slope required to explain response in P_{sfc}
- Positive polar pressure signature resembles known MetUM model bias



Offline SSO field sensitivity experiments (using Lott and Miller scheme) show:


- Global-average stress most sensitive to inter-model variability in slope, but both slope and height influential locally
- Local Froude number controls polarity and strength of drag response to variability in *height*
- Influence of anisotropy and orientation fields relatively small

IFS experiments where SSO fields are substituted for MetUM SSO fields:

- Combined effect of height & slope required to explain response in P_{sfc}
- Positive polar pressure signature resembles known MetUM model bias

IFS
IFS with MetUM
SSO fields
Relative diff.

Jan, 2012

Jan, 2012

MetUM
Relative diff.

Inter-model variability in SSO fields can be of first-order importance to the variability in drag seen across models