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The parametrisation problem
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Consider a horizontal area at some level between
cloud base and the highest cloud top. This horizontal
area, which we designate as our unit horizontal area, | = grid box
is shown schematically in Fig. 1. It must be large
enough to contain an ensemble of cumulus clouds but
small enough to cover only a fraction of a large-scale
disturbance. The existence of such an area is one of the
basic assumptions of this paper.




We observe a continuum of scales of motion
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Stochastic Parametrisation

 We do not observe a clear separation of scales for many processes
* Grid-scale variables can not fully constrain sub-grid scale motions

* Stochastic parametrisation scheme: describes the sub-grid motion
in terms of a pdf constrained by the resolved-scale flow

* Provides stochastic realisations of the sub-grid flow, not some
assumed bulk average effect.

* Represents model uncertainty => necessary for reliable forecasts

traditional stochastic
‘best guess’ Trial #1 Trial #2 ... Trial #N




A general framework for stochastic parametrisation

Identify uncertain process in forecast model

Theory Measurements

Characterise uncertainty in that process

Design stochastic parametrisation to explore this
uncertainty




Use an existing high resolution dataset as ‘truth’

1. Coarse grain high resolution
dataset to forecast model grid
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High resolution 2. Use forecast model to step Forecast model
model forward coarse-grained fields
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Christensen et al, 2018, JAMES.
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SCM as Forecast model

e How can we use an SCM? Use high resolution simulation to prescribe:
— Initial conditions

— Forcing: advective tendencies, geostrophic winds, vertical velocity
— Boundary conditions: Surface sensible and latent heat fluxes

Why use the SCM?

* Supply dynamical tendencies = target uncertainty in the parametrisation
schemes

 The SCM is more portable than global models, and is cheap to run. Can run
SCM on computer where high resolution data is stored

* (e.g.) The IFS is a spectral model, so cannot be run over a limited domain,
but we can tile many independent SCM to cover the limited domain.

e |FS SCM CY40R1 at T639, 91 vertical levels (available through openlFS)

Christensen et al, 2018, JAMES.
Christensen et al, (in prep)



Existing High resolution dataset: Cascade

thanks to Chris Holloway, U. Reading

UK Met Office atmospheric model setup

e Semi-Lagrangian, non-hydrostatic dynamics, 4km resolution

e Large tropical domain (15,500 km x 4,500 km), 10 days of data. Hourly dumps.
* Prescribe observed SST; boundary conditions from ECMWF 25 km analysis

e Convection scheme switched on but only active in low CAPE environments

160 "y 170 120

Holloway et al, 2012; 2013



Case study: is there any physical basis for SPPT?

» Stochastically Perturbed Parametrisation Tendencies (SPPT)
— represents random errors due to model’s physical parametrisation schemes
* Implemented in models worldwide

T — Total tendency
I'=D+ (1 + e)z })z D — Dynamics tendency
i=1

P — Physics tendency

Pattern correlated in space & AR(1) in time:

c L (km) ACEVS)
0.52 500 0.25
0.18 1000 3
0.06 2000 30
All schemes are perturbed using same pattern. ?\V____:J;

All variables perturbed using same pattern.

Pattern constant in height Palmer et al, 2009.

ECMWF Tech Memo 598



Case study: is there any physical basis for SPPT?

* SPPT scheme includes several assumptions  _ 1+ e)ZB
i=l1

— Multiplicative noise

— All schemes treated the same: uncertainly in tendency proportional
to total tendency (errors from schemes perfectly correlated)

— Specifies standard deviations, temporal and spatial correlations with
no physical reason for choices

 Q: Can we constrain some of the characteristics of the SPPT
stochastic term using high-resolution model output?



What we do

Run an independent SCM simulation, initialised every hour, from
every lat-lon point (>68,000) in the coarse-grained domain
Run each SCM simulation for two hours, discard the first hour to

avoid focus on spin up
Repeat for entire 9-day Cascade simulation

Initialise 2-hour SCM simulations every hour
Only consider 2" hour of SCM forecast to avoid focus on spin-up

Cascade

SCM
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Analysing the data: multiplicative noise?

SPPT: T=D+(l+e)) P
i=l

Calculate ‘true’ total \ Consider error in SCM

tendency from CASCADE ~ Assume SCM dynamics physics tendencies
tendency is ‘correct’

T-D=(l+e)» P
\ J 1

|

\ J
Compare ‘true’ !

physics tendency ... ... to parametrised
physics tendency




Consider T tendency

Mean tendency Uncertainty in tendency
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Analysing the data: characteristics of e

SPPT: T=D+(1+¢) z P; + b(P) <2remae
[

Calculate ‘true’ total \ \

tendency from CASCADE ~ Assume SCM dynamics  Consider error in SCM
tendency is ‘correct’ physics tendencies

SPPT, can we
measure the
statistical
characteristics of
the perturbation e

i.e.
— _ L — ) Following the
>ONE T D : : Pl b(P) - : : Pl assumptigons of
[ L
N O

<cCcoe -

Do not use data from BL
or stratosphere (tapered)




Snapshot of optimal SPPT ‘e’ perturbation

60 80 100 120 140 160

Calculate best fit e as a function of position for a

ingle ti t
T_D_zpi_b(P)=ezPi single time step
L i

= Snapshot of optimal stochastic perturbation
at a given time



Characteristics of ‘e’

0.3 v v 0.7

mean

skewness
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Compare to operational parameters
mean u=0
standard deviation o =0.55
skewness y=0



Spatial and temporal correlation
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Model temporal and spatial correlation scales as arising from a sum over
several scales

Iteratively fit each scale, long to short

First scale: ~ grid scale
Second scale: ~ 200-400 km

Ocean provides spatial correlations



New optimal parameters for SPPT in IFS?

e Averaging over the variance ratios for the latitude, longitude and

temporal correlations

NEW: ORIGINAL:
c L (km) T c L (km) T
0.35 32 1 hr 0.52 500 6 hr
0.17 370 4.5d 0.18 1000 3d
0.10 (2000) (30d) 0.06 2000 30d

+ skewness?




Relax SPPT assumptions: e.g. independent SPPT

D+(1+e)2Pi+b(P)

ISPPT T

D + z(l + el-) Pi + b(P)

Measure standard deviations, temporal
correlations and spatial correlations for
each process

Little correlation between e; for different
schemes: r<0.2

iSPPT significantly improves reliability in
ensemble forecasts

» Especially in convecting areas

» Improves forecast busts

» Christensen et al, 2017, QJRMetS
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Conclusions

* Proposed a powerful & general technique for assessing model
error
— Low entry bar: uses existing high-resolution simulations

— Estimates 3D physics and dynamics tendencies, and error fields
— Can be used to constrain existing stochastic parametrisation schemes and
potentially motivate new approaches
* Take SPPT as a case study
— Some indication that multiplicative noise is a good model
— Differences in error characteristics over land vs. ocean
— Optimal perturbations are indeed correlated in space/time
— Able to ‘measure’ the temporal and spatial correlation scales.
— Also highlights limitations of SPPT approach
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* Coarse-grained Cascade data published on UK CEDA archive

* NCL coarse graining scripts, and python SCM deployment scripts available
on github

CEDA
Archive

L) aopp-pred / cg-cascade @ Unwatch ~ Dataset
<>Code Issues 0 Pull requests 0 Projects 0 Wiki Insights Setting ForCIng ﬁ Ies for the ECMWF Integrated Update Frequency: Not Planned
Forecasting System (IFS) Single Column stus: Completed
nline Status:
Set of ncl files used to coarse grain the CASCADE dataset and derive the input and forcing fields need: Model (SCM) over Indian Ocean/Tropical Publication State: Citable
. . . . Publication Date: 2018-06-05
Manage topics PaCIﬁC del’lved from a 10'day hlgh Download Stats:
resolution simulation
D 17 commits ¥ 2 branches © O releases
Open Access Download
Branch: master v New pull request Create new file  Upload fil
Abstract
Hannah Christensen changes for operational use This data set consisting of initial conditions, boundary conditions and forcing profiles for the Single Column

Model (SCM) version of the European Centre for Medium-range Weather Forecasts (ECMWF) model, the Inte-

E) README.md Add a readme file. grated Forecasting System (IFS). The IFS SCM is freely available through the OpenlFS project, on application to
ECMWF for e data were produced and tested for IFS CY40R1, but will be suitable for earlier model

[ add_to_file.ncl Initial commit cycles, and also for @ versions assumi
archived as single ti tamp maps

Temporal Range

Start time:

ing no new boundary fields are required by a later model. The data are
CDF files. If the data are extracted at any lat-lon location and the de- End time:




Thanks for listening




Coarse graining details

1. Local area averaging for coarse graining

l 880 hPa
Wn,k — ZWH,IWI,I( 900 hPa

i
2. Linearly interpolate in time 920 hPa
3. Vertical interpolation

e Evaluate coarse-scale grid box mean p,

* Coarse-grain other fields along model levels

* Interpolate from native model levels to
target model levels

\eN 8%

\eV QP
\eV &%

4. Above high-resolution model top, pad data using ECMWF analysis
5. Advective tendencies estimated from the coarsened fields

adv(y)|,, = —U,, 'gk(l//n,k)

6. Specify sensible and latent heat fluxes from high-resolution dataset, but take
static boundary conditions from operational ECMWF model at T639

Christensen et al, 2018, JAMES.



15 hPa
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Where are the different schemes active?
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Where are the different schemes active?
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Consider T tendency

Bias in SCM

Standard deviation vs. mean
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Consider T tendency

Bias in SCM Standard deviation vs. mean
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Implementation details

1. Verify coarse-graining procedure by taking IFS forecast data at T639

* Linearly interpolate 1hr -> 15 mins
* Estimate advective fluxes from gridpoint fields
e Supply sensible and latent fluxes instead of interactive land scheme
* Interpolate from native model levels to target model levels
@ (b) ©
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Christensen et al, 2018, JAMES.
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W. Pacific
Ocean

Ocean
West of
Australia

Maritime
Continent
Land

Maritime
Continent
Ocean

How does the SCM compare to Cascade?
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How does the SCM compare to Cascade?

W. Pacific
Ocean

Ocean
West of

Australia

Maritime
Continent
Land

Maritime
Continent
Ocean

ion flux / mm hr

precipitaion ==

v WA, '\.‘""lw"‘l‘",""" k

t/days

Precipitation
Total —

-> discard first hour of SCM, and compare evolution over 2" hour



Cf. existing approaches to identify model error

e E.g. Initial tendency approach in which physics tendencies in
data assimilation cycle are compared to the analysis

* E.g. Transpose AMIP in which climate models are runin
weather forecasting mode from common initial conditions

Initial Transpose AMIP My SCM

tendency approach

Decompose model evolution @ @
(& error) into single processes

No data assimilation capabilities @ @
needed to evaluate forecast model

Comparison of model with its native @
analysis may mask errors

Inconsistencies in IC can lead to
systematic drifts @ @




Relax SPPT assumptions: 1. constant in z

e Split atmosphere up into vertical
chunks

e C(Calculate e independently for each
chunk

— Different statistics at different levels

— Low correlation between e fitted at
different levels




Relax SPPT assumptions: 2. variables

: T-Q
Calculate separate perturbation for oal -
each prognostic variable (T, g, U, V) ' | ;
. . . . e c ! l
Find e; and e, have similar statistics g 0.35 l
Find e, and e, have similar statistics 2
8 0.3 ¢ .
Find correlations of 0.3-0.4 for (eq, e,) ' i
: ) 0.25 | - -
Low correlations for all other pairs Apro7  Apr10  Apri13  Apri16

2009
local time centre domain



Impact of SPPT

Palmer et
al, 20009.
ECMWEF
Tech Memo
598

b) Tropics
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ISPPT Results: medium range

N. Extra-tropics S. Extra-tropics Tropics

0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘ 0.3 ‘ ‘ ‘ ‘
0 3 6 9 12 15 0 3 6 9 12 15 0 3 6 9 12 15
Lead time / days Lead time / days Lead time / days

~——— IConly
SPPT
iSPPT [112212]
iSPPT [123456]

Christensen, Lock, Moroz, Palmer, 2017, QJ.



What information do we have?

v'  Total change in (T, g, U, V) in high-resolution Cascade
over 1hr time interval as a function of model level,
location and forecast start time

v Changein (T, q, U, V) in IFS SCM over 1 hr, decomposed
into dynamics and individual parametrised tendencies,

as a function of model level, location and forecast start
time



