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Arakawa & Schubert, 1974

The parametrisation problem

= grid box



We observe a continuum of scales of motion

Nastrom & Gage, 1985

100km



Stochastic Parametrisation

• We do not observe a clear separation of scales for many processes
• Grid-scale variables can not fully constrain sub-grid scale motions
• Stochastic parametrisation scheme: describes the sub-grid motion 

in terms of a pdf constrained by the resolved-scale flow
• Provides stochastic realisations of the sub-grid flow, not some 

assumed bulk average effect.
• Represents model uncertainty => necessary for reliable forecasts

stochastic
Trial #1 Trial #2 ... Trial #N

traditional
‘best guess’



A general framework for stochastic parametrisation

Identify uncertain process in forecast model

Characterise uncertainty in that process

Theory Measurements

Design stochastic parametrisation to explore this 
uncertainty



3. Compare at 

later time

Forecast model

Christensen et al, 2018, JAMES.

Christensen et al, (in prep)

1. Coarse grain high resolution 

dataset to forecast model grid

Use an existing high resolution dataset as ‘truth’

2. Use forecast model to step 

forward coarse-grained fields

High resolution 

model



SCM as Forecast model

• How can we use an SCM? Use high resolution simulation to prescribe:
– Initial conditions
– Forcing: advective tendencies, geostrophic winds, vertical velocity
– Boundary conditions: Surface sensible and latent heat fluxes

• IFS SCM CY40R1 at T639, 91 vertical levels     (available through openIFS)

Why use the SCM?

• Supply dynamical tendencies à target uncertainty in the parametrisation 
schemes

• The SCM is more portable than global models, and is cheap to run. Can run 
SCM on computer where high resolution data is stored

• (e.g.) The IFS is a spectral model, so cannot be run over a limited domain, 
but we can tile many independent SCM to cover the limited domain.

Christensen et al, 2018, JAMES.
Christensen et al, (in prep)



Existing High resolution dataset: Cascade
thanks to Chris Holloway, U. Reading

CASCADE 4km 3DSmag OLR

• UK Met Office atmospheric model setup 
• Semi-Lagrangian, non-hydrostatic dynamics, 4km resolution
• Large tropical domain (15,500 km x 4,500 km), 10 days of data. Hourly dumps.
• Prescribe observed SST; boundary conditions from ECMWF 25 km analysis
• Convection scheme switched on but only active in low CAPE environments

Holloway et al, 2012; 2013



Case study: is there any physical basis for SPPT?
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iPeDT
T  – Total tendency
D – Dynamics tendency
P  – Physics tendency

Pattern correlated in space & AR(1) in time:

All schemes are perturbed using same pattern.
All variables perturbed using same pattern.
Pattern constant in height

σ L (km) ! (days)
0.52 500 0.25

0.18 1000 3

0.06 2000 30

Palmer et al, 2009.
ECMWF Tech Memo 598

• Stochastically Perturbed Parametrisation Tendencies (SPPT)
– represents random errors due to model’s physical parametrisation schemes

• Implemented in models worldwide



• SPPT scheme includes several assumptions
– Multiplicative noise
– All schemes treated the same: uncertainly in tendency proportional 

to total tendency (errors from schemes perfectly correlated)
– Specifies standard deviations, temporal and spatial correlations with 

no physical reason for choices

• Q: Can we constrain some of the characteristics of the SPPT 
stochastic term using high-resolution model output?

Case study: is there any physical basis for SPPT?
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What we do
6

• Run an independent SCM simulation, initialised every hour, from 
every lat-lon point (>68,000) in the coarse-grained domain

• Run each SCM simulation for two hours, discard the first hour to 
avoid focus on spin up

• Repeat for entire 9-day Cascade simulation

Time / hr

Cascade

SCM

0                      1                      2                      3                      4                      5

Initialise 2-hour SCM simulations every hour
Only consider 2nd hour of SCM forecast to avoid focus on spin-up



Analysing the data: multiplicative noise? 
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iPeDTSPPT:

Calculate ‘true’ total 
tendency from CASCADE Assume SCM dynamics 

tendency is ‘correct’

Consider error in SCM 
physics tendencies

T −D = (1+ e) Pi
i=1

5

∑
Compare ‘true’ 

physics tendency … … to parametrised 
physics tendency
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Standard deviation vs. mean

Consider T tendency
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Data grouped by level. 
Dark blue: levels 91—87 (ground—995 hPa)
Yellow: levels 32—36 (86—60 hPa)

Mean tendency Uncertainty in tendency



Analysing the data: characteristics of e 

SPPT:

Calculate ‘true’ total 
tendency from CASCADE Assume SCM dynamics 

tendency is ‘correct’
Consider error in SCM 
physics tendencies

SOLVE
i.e.
Following the 
assumptions of 
SPPT, can we 
measure the 
statistical 
characteristics of 
the perturbation eDo not use data from BL 

or stratosphere (tapered)

T
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Calculate best fit e as a function of position for a 
single time step

Þ Snapshot of optimal stochastic perturbation 
at a given time

500km

Snapshot of optimal SPPT ‘e’ perturbation
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Characteristics of ‘e’

Compare to operational parameters
mean µ = 0
standard deviation σ = 0.55
skewness ! = 0
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Spatial and temporal correlation

First scale: ~ grid scale
Second scale: ~ 200–400 km
Ocean provides spatial correlations
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• Model temporal and spatial correlation scales as arising from a sum over 
several scales

• Iteratively fit each scale, long to short

LON LAT TIME



New optimal parameters for SPPT in IFS?

3am                                                            7:30am                                                   12pm• Averaging over the variance ratios for the latitude, longitude and 
temporal correlations

• + skewness?

σ L (km) !
0.35 32 1 hr
0.17 370 4.5 d
0.10 ( 2000 ) ( 30 d )

σ L (km) !
0.52 500 6 hr
0.18 1000 3 d
0.06 2000 30 d

NEW: ORIGINAL:



Relax SPPT assumptions: e.g. independent SPPT

iSPPT

SPPT

Measure standard deviations, temporal 
correlations and spatial correlations for 
each process

Little correlation between ei for different 
schemes: r < 0.2

iSPPT significantly improves reliability in 
ensemble forecasts
Ø Especially in convecting areas
Ø Improves forecast busts
Ø Christensen et al, 2017, QJRMetS
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Conclusions

• Proposed a powerful & general technique for assessing model 
error
– Low entry bar: uses existing high-resolution simulations
– Estimates 3D physics and dynamics tendencies, and error fields
– Can be used to constrain existing stochastic parametrisation schemes and 

potentially motivate new approaches
• Take SPPT as a case study

– Some indication that multiplicative noise is a good model
– Differences in error characteristics over land vs. ocean
– Optimal perturbations are indeed correlated in space/time
– Able to ‘measure’ the temporal and spatial correlation scales.
– Also highlights limitations of SPPT approach
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Thanks for listening
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level 89

Coarse graining details

1. Local area averaging for coarse graining

2. Linearly interpolate in time
3. Vertical interpolation

4. Above high-resolution model top, pad data using ECMWF analysis
5. Advective tendencies estimated from the coarsened fields

6. Specify sensible and latent heat fluxes from high-resolution dataset, but take 
static boundary conditions from operational ECMWF model at T639

• Evaluate coarse-scale grid box mean psfc
• Coarse-grain other fields along model levels
• Interpolate from native model levels to 

target model levels

Christensen et al, 2018, JAMES.



Where are the different schemes active?

100 hPa

400 hPa

900 hPa

15 hPa



Where are the different schemes active?
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Implementation details

1. Verify coarse-graining procedure by taking IFS forecast data at T639
• Linearly interpolate 1hr -> 15 mins
• Estimate advective fluxes from gridpoint fields
• Supply sensible and latent fluxes instead of interactive land scheme
• Interpolate from native model levels to target model levels

T: MC region

Land

Sea

Christensen et al, 2018, JAMES.
Interactive land 

scheme
Surface fluxes



How does the SCM compare to Cascade?
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How does the SCM compare to Cascade?
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-> discard first hour of SCM, and compare evolution over 2nd hour



• E.g. Initial tendency approach in which physics tendencies in 
data assimilation cycle are compared to the analysis 

• E.g. Transpose AMIP in which climate models are run in 
weather forecasting mode from common initial conditions

Initial 
tendency

Transpose AMIP My SCM
approach

Decompose model evolution          
(& error) into single processes J J
No data assimilation capabilities 
needed to evaluate forecast model J J
Comparison of model with its native 
analysis may mask errors L
Inconsistencies in IC can lead to 
systematic drifts L L

Cf. existing approaches to identify model error



Relax SPPT assumptions: 1. constant in z
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• Split atmosphere up into vertical 
chunks

• Calculate e independently for each 
chunk
– Different statistics at different levels
– Low correlation between e fitted at 

different levels



Relax SPPT assumptions: 2. variables

• Calculate separate perturbation for 
each prognostic variable (T, q, U, V)

• Find eT and eq have similar statistics
• Find eU and eV have similar statistics
• Find correlations of 0.3-0.4 for (eT, eq)
• Low correlations for all other pairs Apr 07 Apr 10 Apr 13 Apr 16
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Impact of SPPT
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Weisheimer et al 2014, Phil Trans R Soc A.
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al, 2009. 
ECMWF 
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Christensen et al, 
2017, J. Climate
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What information do we have?
6

ü Total change in (T, q, U, V) in high-resolution Cascade 
over 1hr time interval as a function of model level, 
location and forecast start time

ü Change in (T, q, U, V) in IFS SCM over 1 hr, decomposed 
into dynamics and individual parametrised tendencies, 
as a function of model level, location and forecast start 
time


