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Methods for generating initial
conditions for weather ensembles

: Simulating the analysis errors
(perturbed obs 4D-Var; -

# EnKFs; LETKFs)

Predominantly dynamical
(breeding, energy ‘
singular vectors)




Model uncertainty is where the
most interesting stuff is going on.

ensemble t=t+At

members’
trajectories

reality



Model uncertainty testing in global
ensembles

* Compare NCEP’s operational STTP method
against:
— ECMWEF’s “SPPT” (stochastically perturbed
physical tendencies)
— UK Met Office “VC” (vorticity confinement)

— Our perturbed boundary-layer relative humidity.



NCEP operational scheme (STTP)

Stochastic Total Tendency Perturbation

Scheme (Hou, Toth and Zhu, 2006)

NCEP operation — Feb. 2010
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Formulation:

Simplification: Use finite difference form for the stochastic term

Modify the model state every 6 hours:

X, X+7/Zn” {[ 6},] [(x, 6!1]}

Where w is an evolving combination matrix, and vy is a rescaling factor.

random linear combinations of ensemble tendency
perturbations added to state every 6-h
(entire ensemble must be run concurrently).



Schemes we tested

e Stochastically-perturbed physics tendencies
(SPPT) — operational ECMWF scheme.

* Vorticity confinement (VC) —under
development at UKMET and ECMWF.

e Stochastically-peturbed boundary-layer
humidity (SHUM).



ECMWF method (SPPT)

Stochastically Perturbed Physics Tendency

* Perturbed Physics tendencies
X, =(1+rmX,

|J- vertical weight: 1.0 between surface and 100 hPa, decays to zero
between 100 hPa and 50 hPa.

I'- horizontal weights: ranges from -1.0 to 1.0, a red noise process with a

« Temporal timescale of 6 hours
« e-folding spatial scale of 500 km



Examples of stochastic patterns
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Vorticity confinement

(Sanches, Williams and Shutts, 2012 QJR doi 10.1002)
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Figure 6: Two frames of animation from two mpeg movies created
using flowanim and mpeg2encode. Both frames depict the 60th
frame of the movie. The left animation is created without vorticity
confinement, the one on the right with vorticity confinement and a
relatively high force factor

acts as an advective
velocity

€=0.6 in our experiments S~ \/C force



Stochastic boundary-layer humidity

 SPPT only modulates existing physics tendency
(cannot change sign, trigger new convection).

* Triggers in convection schemes very sensitive to
BL humidity.

qperturbed — (1+ rn)q

* Vertical weight r decays exponentially from
surface. Added every time step after physics
applied. Random pattern uy has a (very small)
amplitude of 0.00375, horizontal/vertical scales
(250 km, 3-h).
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Combination
of 3 schemes
produces
calibrated
track
forecasts, but
does not
reduce
ensemble
mean error.
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Example (Isaac)

09L 2012082400 (stochastic physics) 09L 2012082400 (no stochastic physics)
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Reforecasts:
what are they good for?

Using multi-decadal reforecasts from the
NCEP Global Ensemble Forecast System.



GEFS reforecast v2 details

Seeks to mimic GEFS operational configuration as of February 2012.
Each 00Z, 11-member forecast, 1 control + 10 perturbed.\

Reforecasts produced every day, for 1984120100 to current (actually,
working on finishing late 2012 now).

CFSR (NCEP’s Climate Forecast System Reanalysis) initial conditions (3D-Var)
+ ETR perturbations (cycled with 10 perturbed members). After ~ 22 May
2012, initial conditions from hybrid EnKF/3D-Var.

Resolution: T254L42 to day 8, T190L42 from days 7.5 to day 16.

Fast data archive at ESRL of 99 variables, 28 of which stored at original ~1/2-
degree resolution during week 1. All stored at 1 degree. Also: mean and
spread to be stored.

Full archive at DOE/Lawrence Berkeley Lab, where data set was created
under DOE grant.



Status

00Z reforecasts 1985-2010 completed and publicly
available.

2011- Sep 2012 reforecasts are being processed,
available within weeks.

Within a month or two, we will be pulling real-
time GEFS data over from NCEP and putting it in
our archive.

Web sites are open to you now:
— NOAA/ESRL site: fast access, limited data (99 fields).
— US Department of Energy: slow access, but full data set

Soon: experimental probabilistic precipitation
forecast graphics in real time.



Data that is readily available from ESRL

Table 1: Reforecast variables available for selected mandatory and other vertical
levels. ® indicates geopotential height, and an X indicates that this variable is
available from the reforecast data set at 1-degree resolution; a Y indicates that the
variable is available at the native ~0.5 degree resolution. AGL indicates “above
ground level.”
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Also: hurricane track files
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Data that is readily available from ESRL

Table 2: Single-level reforecast variables archived (and their units). Where an [Y]
is displayed, this indicates that this variable is available at the native ~0.5-degree
resolution as well as the 1-degree resolution.

Variable (units)

Mean sea-level pressure (Pa) [Y]

Skin temperature (K) [Y]

Soil temperature, 0.0 to 0.1 m depth (K) [Y]

Volumetric soil moisture content 0.0 to 0.1 m depth (fraction between
wilting and saturation) [Y]

Water equivalent of accumulated snow depth (kg m2, i.e,, mm) [Y]
2-meter temperature (K) [Y]

2-meter specific humidity (kg kg! dry air) [Y]

Maximum temperature (K) [Y]

Minimum temperature (K) [Y]

10-m u wind component (ms-1) [Y]

10-m v wind component (ms) [Y]

Total precipitation (kg m2, i.e.,, mm) [Y]

Water runoff (kg m~, i.e, mm) [Y]

Average surface latent heat net flux (W m-2) [Y]

Average sensible heat net flux (W m2) [Y]

Average ground heat net flux (W m-2) [Y]

Sunshine

Convective available potential energy (] kg1) [Y]

Convective inhibition (J kg1) [Y]

Precipitable water (kg m-2, i.e.,, mm) [Y]

Total-column integrated condensate (kg m, i.e,, mm) [Y]

Total cloud cover (%)

Downward short-wave radiation flux at the surface (W m-2) [Y]
Downward long-wave radiation flux at the surface (W m2) [Y]
Upward short-wave radiation flux at the surface (W m2) [Y]
Upward long-wave radiation flux at the surface (W m2) [Y]
Potential vorticity on 6 = 320K isentropic surface (K m2 kg1 s-1)

U component on 2 PVU (1 PVU =1 Km? kg s1) isentropic surface (ms-1)
V component on 2 PVU isentropic surface (ms-1)

Temperature on 2 PVU isentropic surface

Pressure on 2 PVU isentropic surface 19




500 hPa Z anomaly correlation
(from deterministic control)

500 hPa geopotential height
anomaly correlation from reforecasts

1.0

Lines w/o filled colors
for second—generation
reforecast (2012, T254)

C
0
©
e Lines with filled colors
o . .
O for first-generation
= reforecast (1998, T62).
:
< Perhaps a 1.5-2.5 day
improvement.
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BSS

GEFS blocking skill by half decade
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Blocking is evaluated using Tibaldi-Molteni algorithm for every longitude, every day. Skill
of the ensemble in predicting blocking is then evaluated.

Decreased Atlantic sector skill in 1985-1989 period stands out.
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Skill of raw reforecasts
(no post-processing)



Skill of calibrated precipitation forecasts
(over US, 1985-2010, “rank analog” calibration method)

(a) Brier skill scores, > 10 mm, (b) Brier skill scores, > 50 mm,
reforecast calibrated reforecast calibrated
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Version 2 (2012 GEFS)

Reliability, > 10 mm precipitation 24 h-
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TC Rita (2005)

GFS reforecast ensemble

72-h forecast
initialized at 00Z 22 Sept

G Beforecs i for B ta (2000]
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TC Rita (2005)

ARW ensemble with GFS
reforecast ensemble as
boundary and initial
conditions

72-h forecast
initialized at 00Z 22 Sept

Rita (2005) ARW Ensemble MSLP Forecast
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A synthetic example of using reforecasts
to make track error bias corrections

72-h Forecast Verifying 1200 UTC 9 September

~~ Ensemble Mean; Reforecast Analog,
and Observed:Positions
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Define BSS for evaluating blocking skill

The blocking Brier Skill score is calculated after summing forecast and
climatological Brier scores over the relevant longitudes in either the Pacific
or Atlantic basins, respectively, then averaged. For example (Pac):

BS

BSS=1.0- —>==
climo
nlons ndates
S = 5 5 (17(1)- o)
nlons ndates
=535 (1) al0)

1 if blocked
o(l,)=1 -
P 0 if unblocked

p==(1,) = ensemble- based probability of block for thislongitude

C"”‘0( ) climatological probability of block for thislongitude



Methods for representing model
uncertainty in ensembles

e Multi-model ensembles

— Pros
* Everybody gets to keep working on their own model.
* Seems to work well for seasonal predictions

— Cons

* Heavy maintenance burden — hard to keep all models
equally skillful.

 Addresses uncertainties in model formulation — but not
the effects of sub-grid scale variability.



Methods for representing model
uncertainty in ensembles

* Parameter perturbations

— Pros

» Relatively simple to create (no need to develop new
schemes).

— Cons

* How to determine the sensitive parameters, what a
reasonable parameter range is?

* Nonlinear interactions between processes
(radiation/convection/boundary layer). Easy to push
model into an unrealistic regime.



Methods for representing model
uncertainty in ensembles

e Stochastic parameterization

— Pros
* Potentially a more rigorous approach.

* They have a deterministic limit — can maintain a single
model for deterministic and ensemble prediction.

— Cons

* Hard to find observations to inform development (use
LES simulations instead?)

* Should be done from the ground-up, at the process
level.



VC spread — control spread
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Ensemble Mean Error
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VC spread — control spread
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Specific Humidity Spread _

Almost all of the spread increase comes from SHUM ——
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Zonal mean T bias (120-h)
(relative to EC analysis)
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Effect on 3-d forecast TC position spread

Cyclone Positions control \/@vclone Positions vc Cyclone Positions sttp




esrl.noaa.gov/psd/forecasts/reforecast2/download.html

Select Desired Variables and Associated Levels:

Single Level (1°x1°) | Pressure Levels (1°x1°) Hybrid Levels (1°x1°) Single Level (Gaussian ~.5°)

) Total Accumulated Precipitation

) U-Component of Wind at 10 meters

) U-Component of Wind at 80 meters

) Convective Available Potential Energy

) Surface Downward Long-Wave Radiation Flux
) Surface Upward Long-Wave Radiation Flux

~) Ground Heat Flux

_) Surface Sensible Heat Net Flux

~) Surface Pressure

~) Volumetric Soil Moisture Content

") Total Cloud Cover

) Skin Temperature

- Minimum Temperature

) Upward Long-Wave Radiation Flux

) Water Equivalent of Accumulated Snow Depth
~) Vertical Velocity at 850 hPa Surface

) Pressure on 2 PVU Surface

) V-Component of Wind on 2 PVU Surface

() Temperature at 2 meters

() V-Component of Wind at 10 meters

() V-Component of Wind at 80 meters

() Convective Inhibition

() Surface Downward Short-Wave Radiation Flux
() Surface Upward Short-Wave Radiation Flux
() Surface Latent Heat Net Flux

() Mean Sea Level Pressure

() Precipitable Water

() Specific Humidity at 2 meters

() Total Column-Integrated Condensate

() Maximum Temperature

() Soil Temperature (0-10 cm below surface)
() Water Runoff

() Wind Mixing Energy

() Temperature on 2 PVU Surface

() U-Component of Wind on 2 PVU Surface

() Potential Vorticity on 320 K Isentrope

Select Desired Dates (Available from Dec 1 1984 to Dec 31 2010):

From:

4 To: G|

= Download all the forecasts within the chosen time period. Help
) Download forecasts within the month-days range for the chosen years. Help

Select Desired Forecast Hour(s):

High Resolution: (selectal or Clear)

0 3 6 9 12
30 33 36 39 42
60 63 66 69 72
108 114 120 126 132
168 174 180 186 192
Low Resolution: (select Al or Clear)

186 192 198 204 210
246 252 258 264 270
306 312 318 324 330
366 372 378 384

15 18 21 24
45 48 51 54

78 84 90 96

138 144 150 156
216 222 228 234
276 282 288 294
336 342 348 354

27
57
102
162

240
300
360

Produces
netCDF files.

Also: direct
ftp access to
allow you to
read the raw
grib files.
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Web Gateway for Global Ensemble Reforecast Data, Version 2

This web page allows users to download selected days of the full model output from

the 2nd-generation NOAA Global Ensemble Forecast System Reforecast
(GEFS/R). The format of data downloaded from this page is "grib2" format. Itis
incumbent on the user to be familiar with the use of this data format as we can
provide only minimal user support. For more information on grib2 data, please see
GRIB2 use at NCEP.

This reforecast mimics the operational ensemble system that the National Weather
Service put into operations in February 2012. The control forecast initial conditions
were generated from the Climate Forecast System Reanalysis (CFSR). 10
perturbed initial conditions were generated using the ensemble transform with
rescaling (ETR; Wei et al. 2008). Model uncertainty was simulated following Hou et
al 2008. Forecasts out to 16 days were generated from 00 UTC initial conditions
every day from December 1984 through 2010.

We anticipate that these full model fields provided here will be useful, for example,
in providing initial and/or lateral boundary conditions for regional reforecasts with
various limited-area models. To access a subset of model output, for example a
small number particular fields such as precipitation, surface temperatures, etc.,
please use the interface at ESRL/PSD. For a more complete description of this
reforecast data set, please read [insert URL].

Please submit only one request at a time. If you encounter problems downloading
data, please contact esrl.psd.reforecast2@noaa.gov

This 2nd-generation GEFS/R was generated under a DOE supercomputer grant at
Lawrence Berkeley Lab.

Select Desired Date (from Dec. 1,
1984 to Dec. 31, 2010):

Date H

Select Ensemble Members:

Perturbation:

Control:

N 12345678910
Select All or Clear

Email Address to Notify When File
is Ready:

| Send |

This DOE
site will be
ready for
access to
tape storage
of full data
(slower).

Use this to

access full
model state.
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MJO deterministic verification metrics

E [a1Ob1,(0) + ar(D)bay(0)]

\/E[ah ) + a3 t)]\/Z[b (1) + ba0)]

where a,,(t) and a,;(t) are the observed RMM1 and
RMM2 at day ¢, and b4,(¢) and b,,(¢) are their respective
forecasts, for the ith forecast with a 7-day lead. Here, N
is the number of forecasts.

COR(7) measures the skill in forecasting the phase of
the MJO, which is insensitive to amplitude errors.
COR(7) is equivalent to a spatial pattern correlation
between the observations and the forecasts when they
are expressed by the two leading combined EOFs.

COR(7) =

| N
RMSE(1) = \/ N; {a, ) — by (OF + [ax4) — by O}

from Lin et al., Nov 2008 MWAR.



Bi-variate RMM1 and RMM?2
correlation and RMSE by half decade

(a) MJO Correlation Skill, 1985-2010

(b) MJO RMSE, 1985-2010
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The first 10 years are much less skillful than the subsequent 16.
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(a) Composite 500 hPa geopotential height under block at Lon = 180E
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Dec-Jan-Feb 1985-2010 CFSR data. Blocks defined here by Tibaldi/Molteni algorithm.



N Hem. blocking: more common in winter, spring
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Blocking as defined in Tibaldi and Molteni (1990) using Z500. Hereafter, let’s focus on
Dec-Jan-Feb. Grey bands defines Euro/Atlantic and Pacific blocking sectors in subsequent plots. 45



