Score verification issues an example

Jean-Noël Thépaut ECMWF October 2012

and many colleagues from ECMWF (special thanks to Gabor Radnoti, Martin Janousek, Tony McNally)

Cycle 38R1: High-resolution scores

2011/09/02-2011/12/21, verified with <u>own analysis</u>

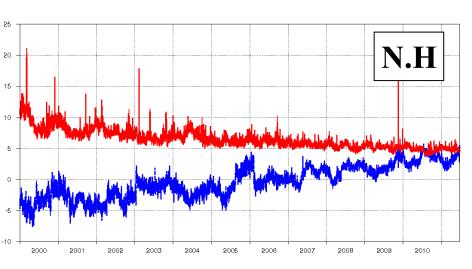
			ccaf	rmsef			10ff		444	1111		
	10ff	,	<u>*</u> **	¥77	1		-	sfc		AAA*		
	2t	sfc					2t	0001.0				
	r	200hPa	<u> </u>	<u> </u>			r	200hPa	****	444***********************************		
		700hPa	***					700hPa		***		_
		100hPa	***	***				100hPa	***	****		
		500hPa	¥**	A * *			ŧ	SUUNPA		****		
	t	850hPa	***	***		·		850hPa	<u> </u>			
europe		1000hPa	***	***		s.hem		1000nPa		***************************************		
	1 1	200hPa	h h	L L				200hPa	<u>**</u>	A A A	_^	overlant recent
		850hPa	<u>*</u> *	A*		vw	850hPa	A4 - 1	<u>**</u>		excellent recent	
		1000hPa	A *	<u> </u>			igsqcup	1000hPa	A A A	**	m	odel cycle
		100hPa	111	111			z	100hPa	AA *	<u> </u>		•
	z	500hPa	<u> </u>	A • • • • • • • • • • • • • • • • • • •				500hPa	A A A	A.A.*	∣∣im	plementation
		850hPa	A A	1				850hPa	**	**		•
		1000hPa	<u> </u>	A A				1000hPa	***	***		erified against
	10ff 2t		****	<u>**</u> ***			10ff 2t	sfc	******	******	014	n analyses)
		sfc	A A A					310	****			/ii aiiaiyses/
		200hPa	. .	*********			r	200hPa	T	*******		
		700hPa	<u> </u>	**************************************				700hPa	****	****		T (1001 D
		100hPa	****	****			100hPa	*******	***	\bigwedge	T@100hPa	
		500hPa	AA 11	<u> </u>			_	500hPa	****	AAAA		
	į.	850hPa	***	***			ľ	850hPa	*****	****		T@850hPa
n.hem		1000hPa	AAAAA	****	 	tropics		1000hPa	***********	********		1 (0/83011Fa
		200hPa	<u> </u>	<u> </u>				200hPa	¥***	******		
	vw	850hPa	AAAA	*****			1	850hPa	***	****		
		1000hPa	<u> </u>	AA AAA				1000hPa	****	****		
	z	100hPa	AAA.	111		[z	100hPa	******	******		
		500hPa	A *	¥***				500hPa	***	*		
		850hPa	A .	* ***********************************				850hPa	* <u>*</u> *	***		
		1000hPa	A .	A • • • • • • • • • • • • • • • • • • •				1000hPa	***	****	Th	anks to Martin Janousek
				•								MWE

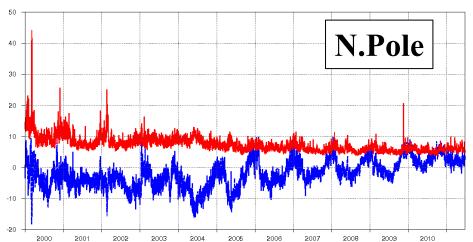
Cycle 38R1: High-resolution scores

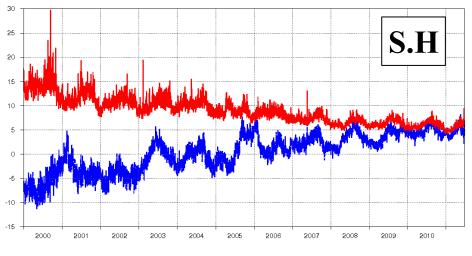
2011/09/02-2011/12/31, verified with <u>observations</u> only 12-hourly rmse

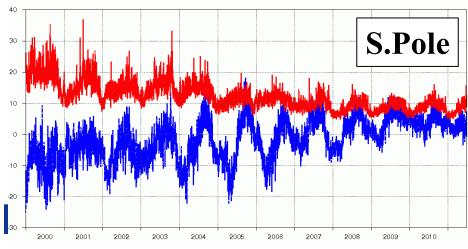
f	100hPa	11	100	Pa *******	<u> </u>				
	200hPa	11	200	ıPa ***					
	f500hPa	1	ff 500	ıPa 🛂	<u>.</u>				
	850hPa	11	850	ıPa					
	1000hPa	T	100)hPa	<u> </u>				
	100hPa	111111	100	Pa III	<u> </u>				
	200hPa	111	200	ıPa **			\longrightarrow		1
eurnafr.wmo t	500hPa	11	n.hem				IOUhPa		1
	850hPa	111	850	Pa ******			290hPa		1
	1000hPa	114111111111	100	mpa	d		ff 500hPa		1
z	100hPa	11.11	100	Pa Attitud			850hPa		1
	200hPa	****	200	Pa AAAA**			1000hPa		1
	500hPa	A A * *	z 500	ıPa 🛂			100bPa	1	
	850hPa	11	850	nPa			200hPa	, W, W, T	
	1000hPa	11.1	100	hPa ***		tropics	t 500hPa	77.7	
	100hPa	111	100	Pa Linear		d'opies	850hPa		
	200hPa		200						
	f 500hPa		ff 500	Pa	7		1000hPa	***************************************	1
	850hPa		850	ıPa			100hPa		1
	1000hPa		100)hPa			200hPa	**************************************	1
	100hPa	11	100	Pa 11			z 500hPa	***************************************	1
	200hPa		200	ıPa			859hPa	* * * * * * * * * * * * * * * * * * *	1
n.amer.wmo t	500hPa	11	s.hem				1000hPa	11	1
	850hPa	111	850	Pa ****					1
	1000hPa	1111	100	Jhra					
	100hPa		100	ıPa		A roaco	nahly	good recent	
	200hPa		200	Pa Lilli		Areasc	лаыу	good recent	
2	500hPa	1	z 500			model	cyclo ir	mplementation	`
	850hPa		850	ıPa		model	cycle II	npiementation	ı
	1000hPa	***		hPa :: * *		(verifie	d agair	nst observation	151
				1		(**************************************	<u> </u>		. <i>,</i>

Relevance of own analysis for verifying forecasts

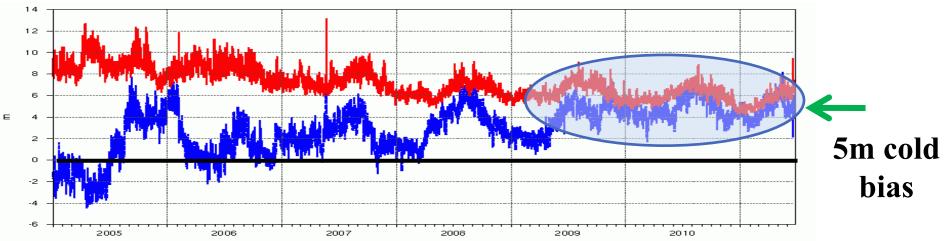

History Met Office – ECMWF analysis difference (Z500)

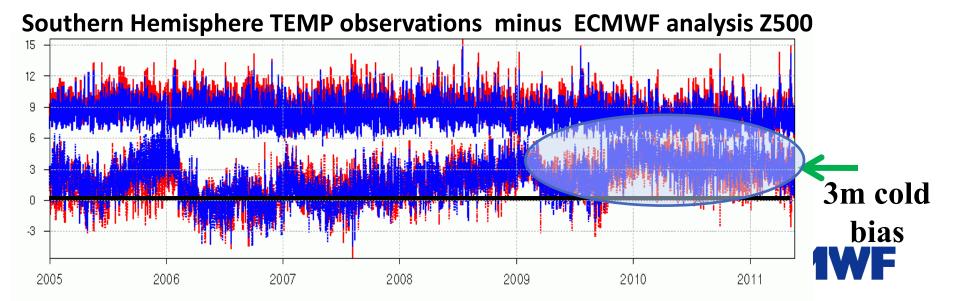

Thanks Martin Janousek




History Met Office – ECMWF analysis difference (Z500) BLUE=mean RED=sdev

Martin Janousek




...who is right and who is wrong ...?

Comparison with TEMP observations

Southern Hemisphere Met Office minus ECMWF analysis Z500

Alternative to own analyses

Different analyses

They have also but different biases

Multi-analyses

- Mean
- Randomly picked

Observations

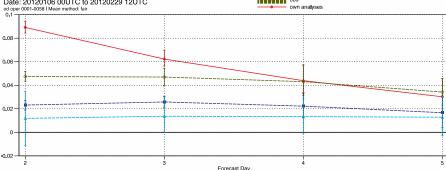
- Representativeness
- Data coverage (big advantage of using satellite data)
- They are not perfect either

Sensitivity study:

Comparison with various analyses:

T-850 hpa

- own analysis: _____
- radiosonde observations: ------
- TIGGE mean of UKMO, NCEP, CMC and JMA analyses: ------
- TIGGE random pick from UKMO,
 NCEP, CMC and JMA analyses: -----


*: ECMWF deliberately excluded from verification database

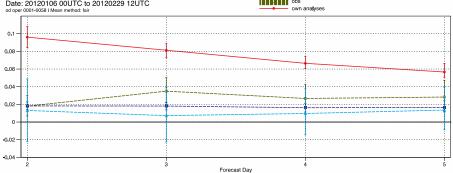
**: "best" systems included

Normalised differences of 0058 vs 0001 scores

850hPa temperature Root mean square error NHem Extratropics (lat 20.0 to 90.0, lon -180.0 to 180.0) Date: 20120106 00UTC to 20120229 12UTC

TIGGE random anl
TIGGE mean anl
obs

Normalised differences of 0058 vs 0001 scores


850hPa temperature

Root mean square error

Tropics (id. -20.10 20.0, pn - 180.0 to 180.0)

Date: 20120166 00UTC to 20120229 12UTC

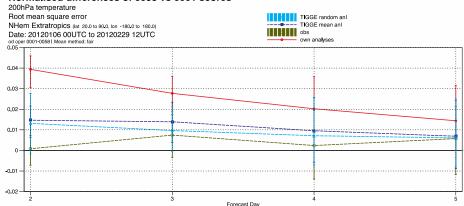
do oper 0001-0008 Newn method: 6 open and open and

Normalised differences of 0058 vs 0001 scores

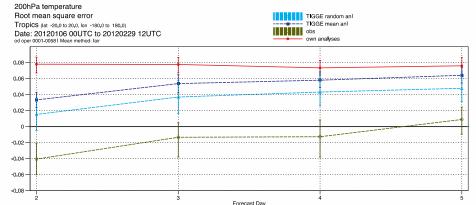
850hPa temperature
Root mean square error
SHem Extratropics (at: ±00.0 to: ±20.0, ton: ±180.0 to ±180.0)
Date: 20120106 00UTC to 20120229 12UTC
od oper 0001-0088 I Mean method: fair
0.14
0.12
0.10
0.08

Sensitivity study:

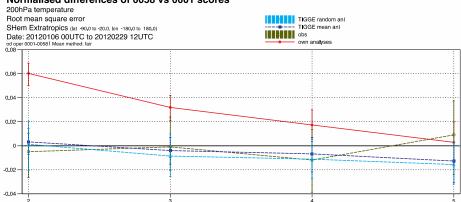
Comparison with various analyses:


T-200 hpa

- own analysis: _____
- radiosonde observations: ------
- TIGGE mean of UKMO, NCEP, CMC and JMA analyses: ------
- TIGGE random pick from UKMO,
 NCEP, CMC and JMA analyses: -----


*: ECMWF deliberately excluded from verification database

**: "best" systems included


Normalised differences of 0058 vs 0001 scores

Normalised differences of 0058 vs 0001 scores

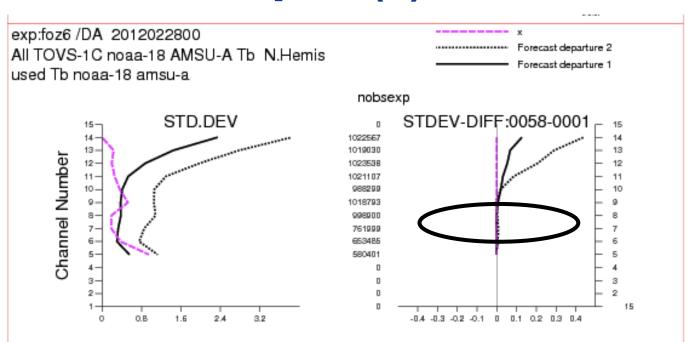
Normalised differences of 0058 vs 0001 scores

Another way of verifying: processing the forecasts through our assimilation suite

Confirmation of previous scores

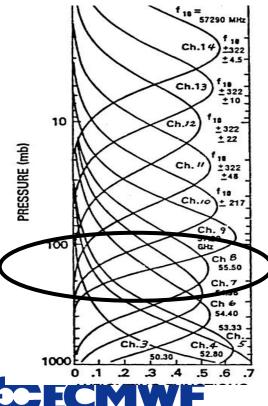
First issue: bias correction of observations

Second issue: R/S data coverage

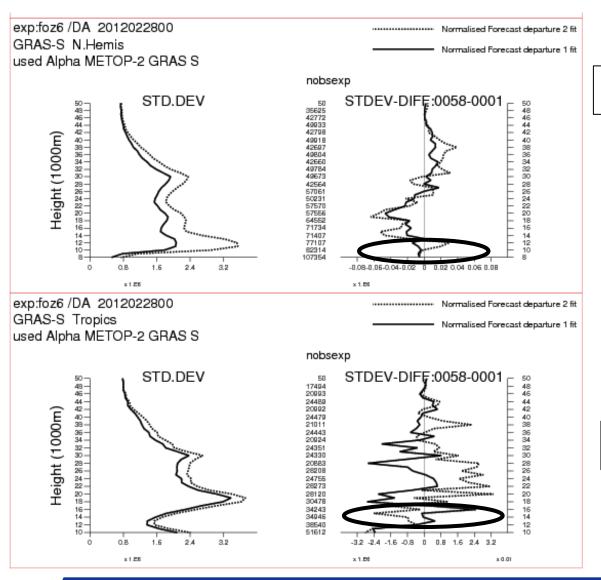


Work in progress: direct comparison of model forecast with satellite observations

- Pros:
 - full data coverage (as good as analyses)
- Cons:
 - Representativeness and interpretation



Two examples (1): AMSU-A



Brightness temperatures

Northern Hemis.

Two examples (2): GPSRO (unbiased dataset)

Northern Hemis.

Bending angles

Tropics

conclusions

- Very much work in progress
- Investigate further the relevance of the TIGGE resource internally
- Promote a more systematic comparison in observation space
 - Possibly requires an additional level of abstraction
 - Satellite data verification can be cross-checked with more standard R/S verification

Thank You

