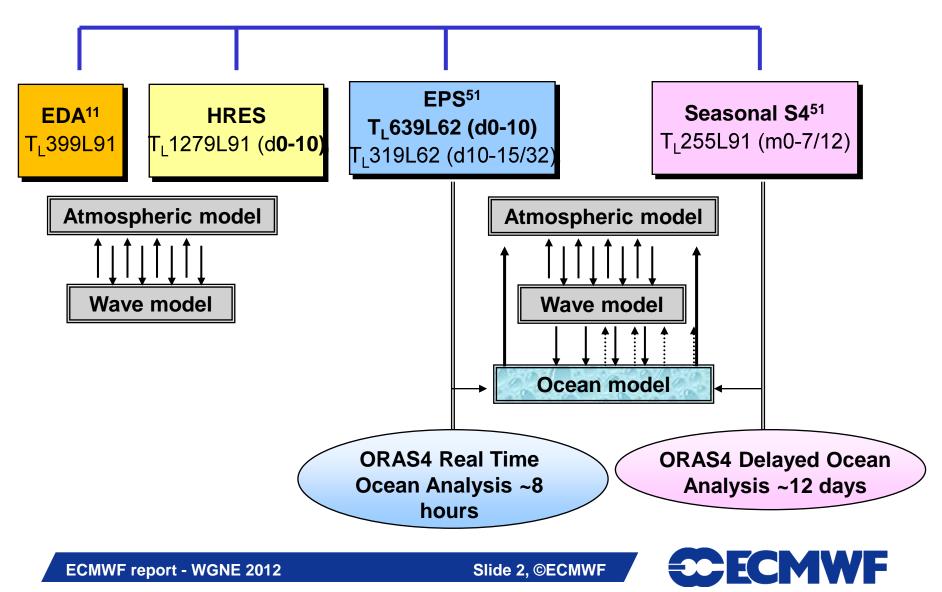
ECMWF Forecasting System Research and Development

Jean-Noël Thépaut ECMWF October 2012

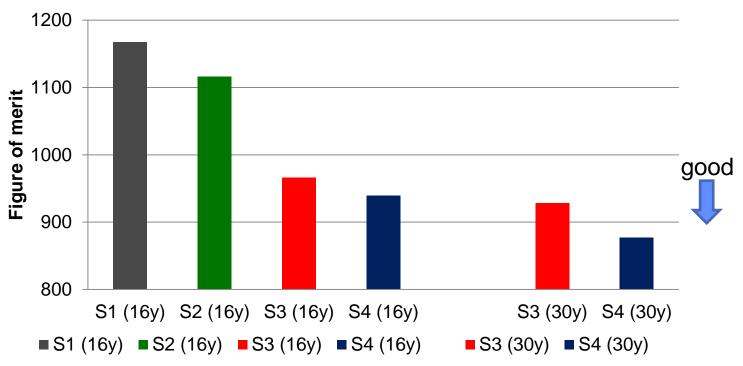

and many colleagues from the Research Department

Slide 1, ©ECMWF

ECMWF report - WGNE 2012

The ECMWF Integrated Forecasting System (IFS)

System updates

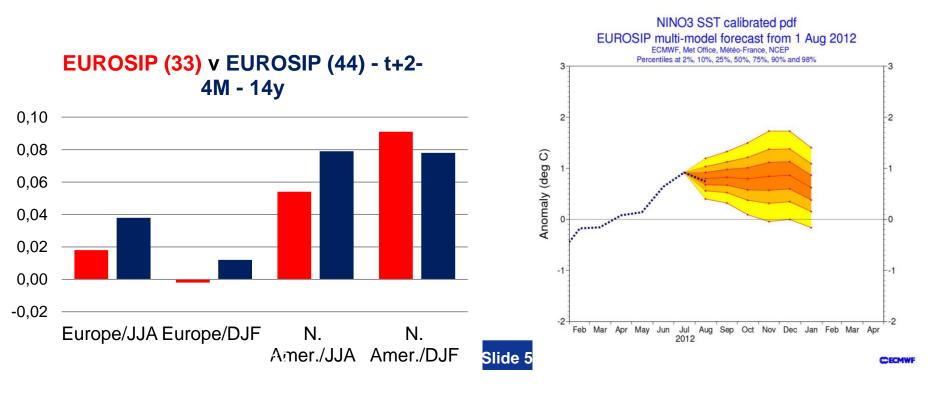

About 2 updates per year revising data usage, model, data assimilation & technical aspects:

- Early 2013 (38R2): 137 level model
- September 2012: NCEP joins ECMWF/UKMO/MF in EUROSIP
- June 2012 (38R1): New Jb, EDA-filtering, clouds/convection, wave model
- April 2012: European Floods Awareness System (EFAS) computational centre
- November 2011 (37R3): Rev. cloud scheme, aircraft b/c, NEXRAD assimilation (*covered last year*)
- November 2011: Seasonal System-4 (higher resolution, updated model cycle, more members, NEMO ocean model 15 members for 30 year hindcasts)
- June 2011 (37R2): AMSU-A obs. error, EDA variances in 4D-Var
- November 2010 (36R4): New cloud scheme, SEKF soil moisture analysis
- June 2010 (36R2): Initial perturbations for EPS from EDA
- January 2010 (36R1): T1279 L91, EPS T639 L62

S4 (Nov '11): progress in seasonal prediction (S1 to S4)

Progress from S1 (1997-2002), S2 (2002-2007), S3 (2007-2011) to S4 (Nov 2011): sustained improvements in ENSO forecast skill is evident from the Figure Of Merit (FMO, mean absolute error of SST M0-7 fcs over Nino 3, Nino 3.4 and Nino 4 area).

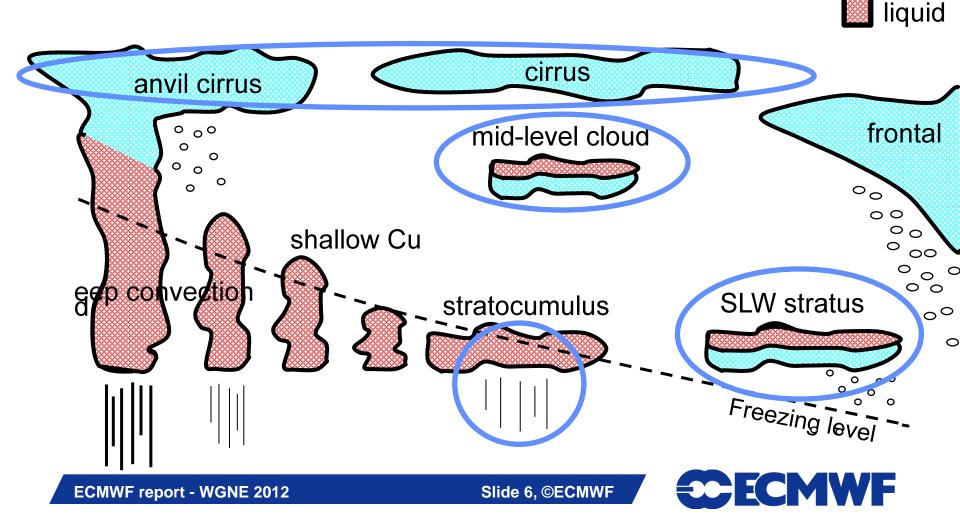
Nino 3/3.4/4 FOM m0-7


ECMWF report - WGNE 2012

Slide 4, ©ECMWF

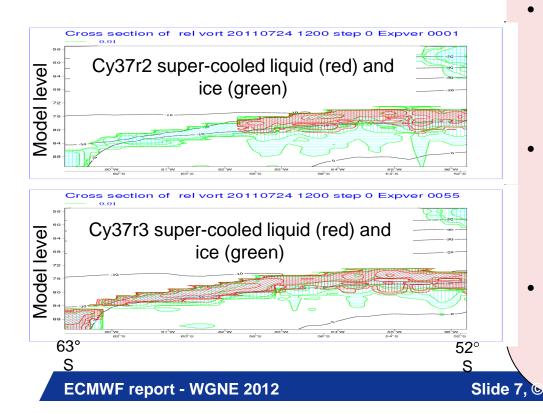
EUROSIP (Sep '12): NCEP joins ECMWF, MF and UKMO

For the first time, European (ECMWF, Meteo France and UK Met Office) and American (NCEP) ensemble systems are used to generate operational products. This follows research that has shown that better and more reliable seasonal forecasts can be created by combining the output from several models.

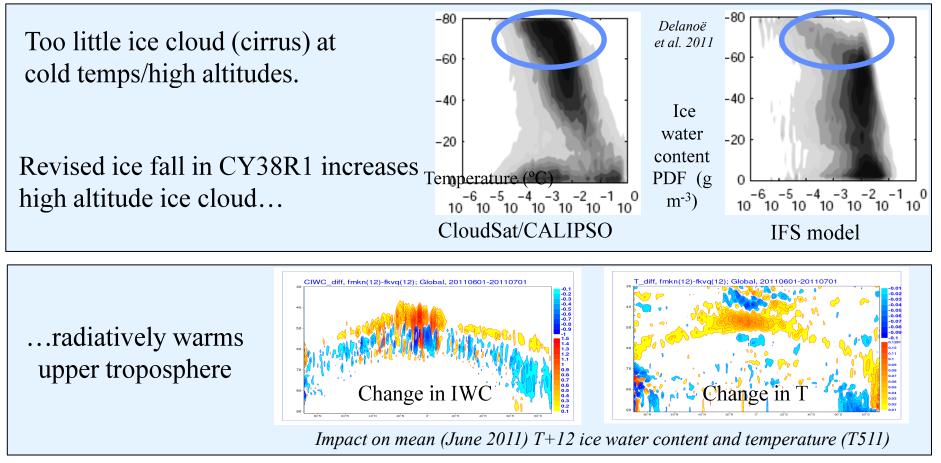


Focus on improved parametrization for 2011/12:

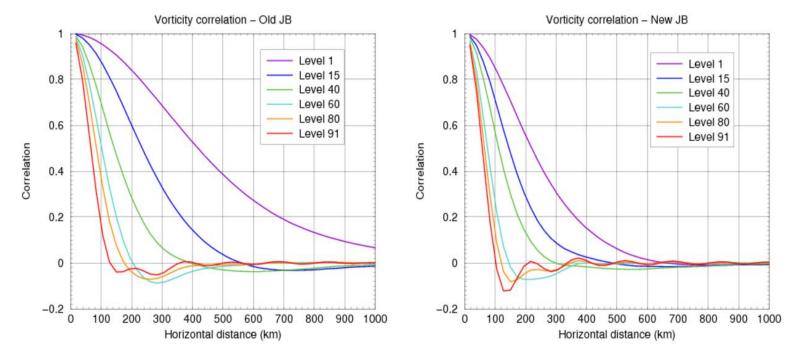

• Super-cooled liquid layers in mixed phase stratiform cloud (37r3)


ice

- Ice water content in cirrus (38r1)
- Reduction of drizzle occurrence


Cy37r3 (Nov '11): revised cloud scheme (SLW)

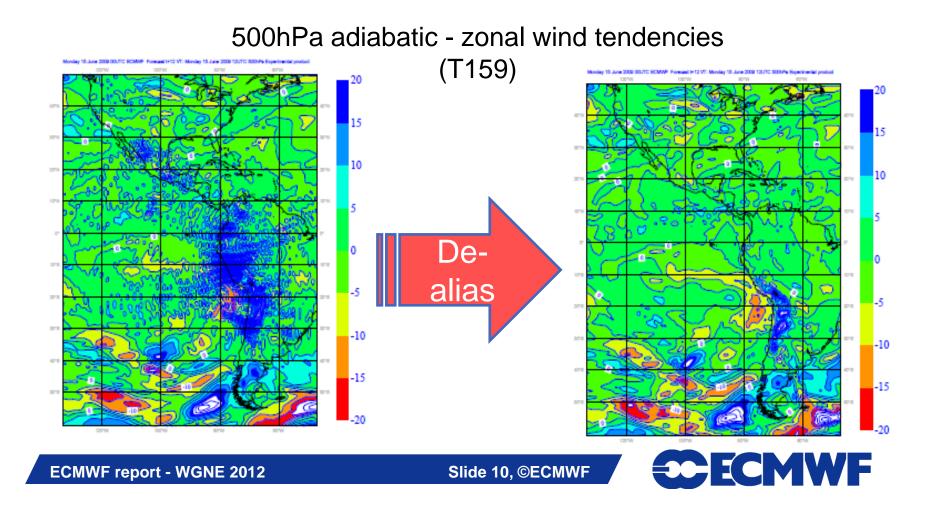
- Super-cooled liquid water (SLW) cloud frequently occurs in atmosphere down to -30°C and below (as seen in aircraft obs, lidar etc.)
- Fine balance between turbulent production of water droplets, nucleation of ice, deposition growth and fallout.
- New cloud scheme represents microphysical processes in mixedphase cloud rather than a diagnostic.
- Cy36r4/Cy37r2 had less SLW, Cy37r3 increases SLW, particularly at cloud top (as often observed).


Addressing model systematic errors - cirrus (medium-range)

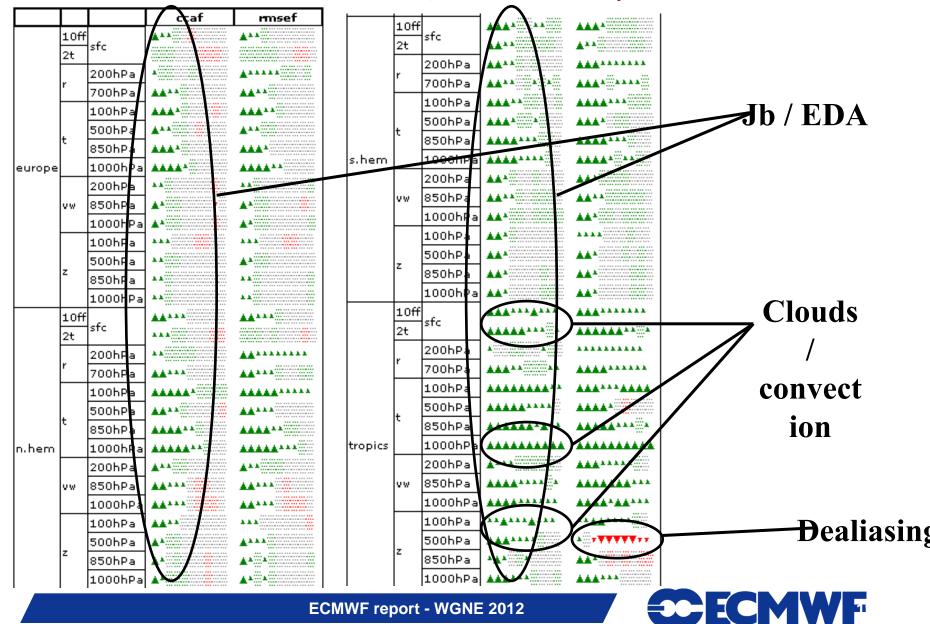
0.1 0.05 0.09 ... significantly 0.04 0.08-8% 0.03 0.07 improves 0.02 0.06 0.05 0.01 N.Hem Z100 hPa Tropics Z100 hPa 0.04 100hPa/200hPa 0.03--0.01 0.02-Day geop. height 10 1 Forecast Day Relative r.m.s.c change for T511 analysis for June 2011

Cy38r1 (Jun '12): new Jb statistics

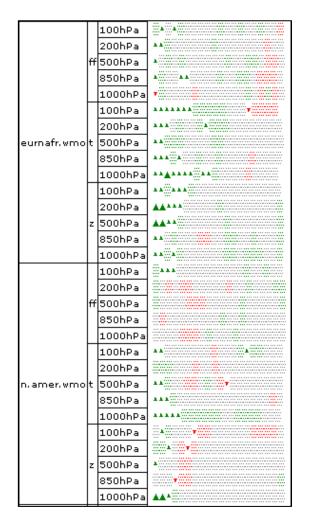
The climatological structure of the background errors, B, has been using 38r1 EDA. The new error correlations are noticeably sharper than the old ones. This means that the analysis now will be able to make better use of high resolution observations like, e.g. radiosonde data, surface pressure data and aircraft measurements.

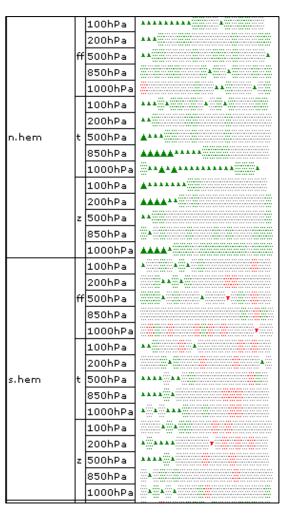


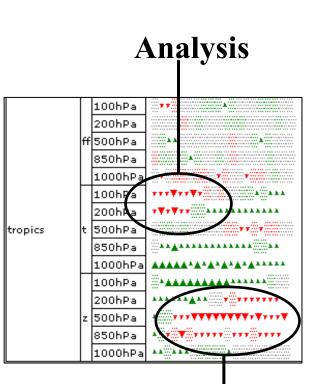
ECMWF report - WGNE 2012


De-aliasing and noise reduction

A new de-aliasing procedure leads to reduced numerical noise.


Cycle 38R1: High-resolution scores


2011/09/02-2011/12/21, verified with own analysis



Cycle 38R1: High-resolution scores

2011/09/02-2011/12/31, verified with <u>observations</u> only 12-hourly rmse

Dealiasing Thanks to Martin Janousek

Cycle 38R1: Ensemble scores (RD)

2011/09/12-2011/12/21, verified with analysis

	L			crps	maef	rmsef	ccaf
	ff		cf		** **	** **	** **
			em		<u>**</u> **	<u>**</u> **	<u>**</u> **
			pf	****			
	\vdash	850hPa	cf		<u>**</u> *****	****	****
	Ļ		em		***	** *****	<u>***</u> ****
	Ľ		pf	***			

		200hPa	đ		A		***
			em		*****	*****	T ****
	I		pf	T ****			
	ľ		cf			****	****
		850hPa	em		****	<u>**</u> **	****
			pf	AAAAA			
europe	H		d f		Å **	¥,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***
		200hPa					***
		2001194	em				
	l.		pf	* **			
			đ		*****	¥***	****
		850hPa	em		<u>**</u> ****	****	¥***
			pf	*****			
			cf		*	*	¥**
		500hPa	em		*****	*****	****
			pf	A		_	_
	z		df (-	<u></u>	** *	**
		1000hPa			TTTT	*** *	r
			pf	***			
	ff		đ		<u></u>	AAAAAAA	** **
			em		***	***	***
			pf	****			
		850hPa	đ		AAAA *****	***	***
	t		em				
			pf	AAAAA			
	⊢		d d		1 L L	4 L	* *
	u	200hPa			A**	Å ¹	A 1111
			em	<u>**</u> ****	44	A	A
			pf	******			
		850hPa	đ		***	** ***	44 ***
		850hPa	em		<u>***</u> ****	****	***
		850hPa	em pf	*** ****		*****	<u></u>
n.hem		850hPa		****			***
n.hem		850hPa 200hPa	pf				*****
n.hem			pf cf em		AAA*****		
n.hem			pf cf em pf	***	***	A*	↓
n.hem	v	200hPa	pf cf em pf cf			A*	A* ***
n.hem	v		pf cf em cf em		***	A*	↓
n.hem	v	200hPa	pf cf em cf em pf			A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A* A*
n.hem	v	200hPa 850hPa	pf cf em cf em			A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A*************************************
n.hem	•	200hPa	pf cf em cf em cf em cf em	A A		A*	A* A*
n.hem		200hPa 850hPa	pf df em df em f df		444 *	41 44 44 44 44 44 44 44 44 44	A*************************************
n.hem	v	200hPa 850hPa	pf cf em cf em cf em cf em	A A	444 *	A1 A41114 A41114 A41114 A4114 A4114 A4114 A4114 A4114	A*************************************
n.hem	v	200hPa 850hPa	pf df em df em f df em f df em	A A		A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A*************************************
n.hem	v	200hPa 850hPa 500hPa	pf df em df em f df em f df em	A A	444 *	A1 A41114 A41114 A41114 A4114 A4114 A4114 A4114 A4114	A*************************************

	_	-		-			1
	Г		f		*****	****	****
	ff		em		****	AAA	
	Ľ						
	⊢	850hPa	pf	***			
			f		****	****	****
	t.		em		<u>*******</u> ****** <u>*</u>	<u>******</u> ********	****
			pf	*******			
	F		f		****		***
			-				
		200hPa	em		*** *	***	***
			pf	****			
	ľ		f		***		*** *
		850hPa	em		AAA^	AAA	AAAA
		o o o nir a					
s.hem	⊢		pf	***			
			f		** *	AA*	**
		200hPa	em		***	<u></u>	**
			pf	****			
	I۲.		f		*** *	** **	** **
		05010					
		850hPa	em	••••••	*** [*]	44 **	** **
	L		pf	***			
	Γ		f		****		* **
		500hPa	em		*** *	****	A A A
			-	** *			
	z		pf				
			cf		** *	****	***
		1000hPa	em		** **	** **	** **
			pf	****			
	t		f			******	
			-				
	ff	850hPa	em		*************	************	
	L		pf	************			
		0000mPa	ef		********	**************************************	AAAAAA****
	ł		em		***********	<u>******</u> ******** <u>*</u>	*******
			pf				
	⊢		df 1		<u>**</u> ********	** ******	** *
			\vdash				
		200hPa	em		** ***********	** ***********	**
			pf	** **********			
	ľ		f		*****	*****	*****
		850hPa	\vdash		*******	******	
		oJunea	em				
tropics	L		ř –	**********			
			cf		*****	*****	¥*
		200hPa	em		<u>**</u> **********	<u>**</u> ******	¥1
			pf	<u></u>			
	Į۷.		df 1			<u></u>	
			\vdash		**********		
		850hPa	em	n	******	*****	******
			pf	******			
	Г	500hPa	f		ATTTTTTTTT	▲*=***********************************	¥***
			em				11111
		Cooned					-
	z		pf	A			
	[cf		**	***	*******
		1000hPa	em		******	******	¥1¥111
			pf	* ***			
<u> </u>	1	• • •	1P.		The	anks to Me	artin Janous
							ii iii ganous

Current projects

Model Division:

- Resolution upgrades (2012: L137, 2015: T2047, etc.)
- Non-hydrostatic model core
- Physical parameterizations: Radiation, clouds, convection, land surface, boundary layer, gravity wave drag; linearized models

Data Division:

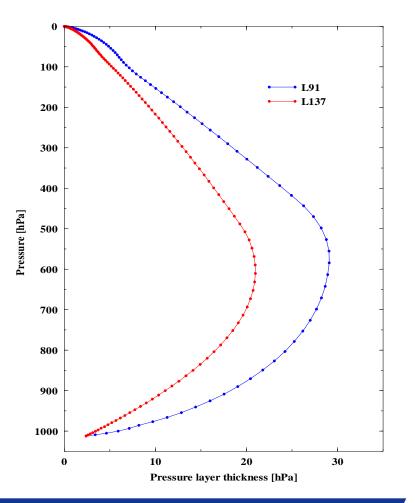
- Long-window 4D-Var (model error), EDA, EnKF
- New instruments (NPP, MSG-3, Metop-B, GCOM-W1, etc.), sampling, errors
- Reanalysis: ERA-Clim (coupling)

Predictability Division:

- Resolution upgrades (2013: L92, 2016: T1023, etc.)
- Link EDA-EPS, stochastic physics
- Ocean/sea-ice model, coupling

Atmospheric Composition Division:

• MACC-II → GMES Atmospheric Service


Technical:

- Scalability (data assimilation, model)
- COPE , OOPS, OpenIFS

L137 (CY38R2)

 Vertical level upgrade for high-resolution forecast model and data assimilation + ... plus many technical contributions and modifications preparing future upgrades

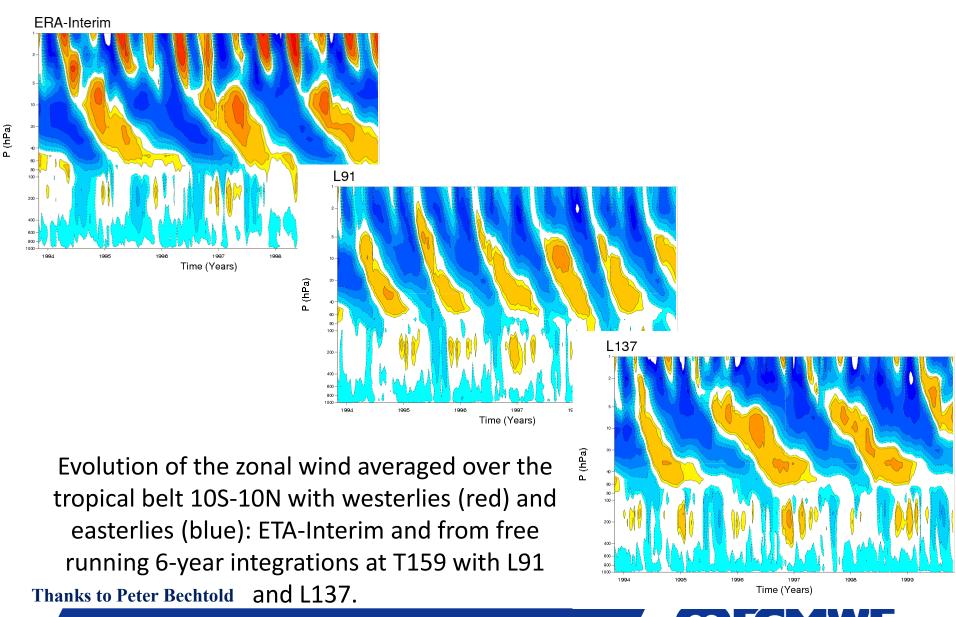
ECMWF report - WGNE 2012

Cycle 38R2: L137

Model climate:

- Warmer stratosphere, colder mid-lower troposphere,
- Better QBO, excessive vertical momentum transport? (diffusion)
- Net TOA SW mixed in stratocumulus areas (fix: shallow convection, diffusion),
- Slightly less convective precipitation, but regional differences
- Surface stress too resolution dependent (fix: blocking height formulation)

Analyses:


- Background errors slightly different
- Model error cycling, balance operator
- Fit to radiosonde T better in stratosphere, worse in mid/lower troposphere
- Wind increments smaller near 200 hPa, larger above; moisture increments large above ITCZ

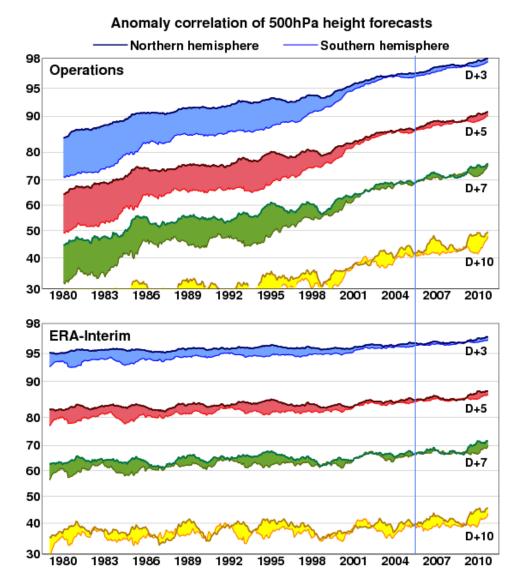
Scores:

- Increased RMS in short-range for 100-500 hPa z; global
- Increased RMS in short-medium range tropospheric z, T; Tropics
- Mostly related to mean error, less to variability

Cycle 38R2: L137

ECMWF report - WGNE 2012

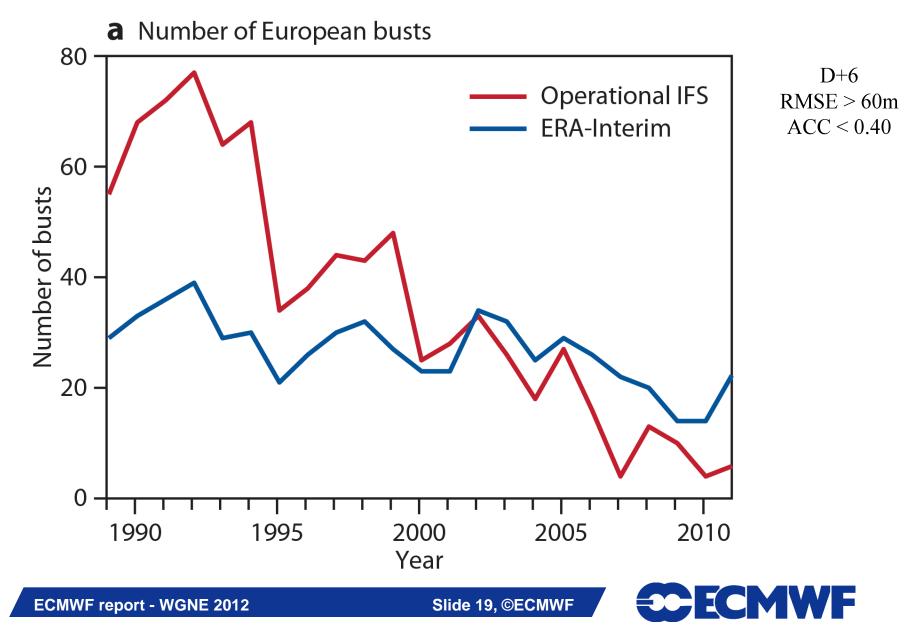
Slide 17, ©ECMWF


ERA-Interim extension: 1979-2012

Reanalysis makes use of data assimilation systems designed for weather forecasting

Reanalysis uses a single model and data assimilation method for a consistent re-analysis with past observations

Consistency in time is the key challenge for climate reanalysis


Difficulties arise from biases in models and observations

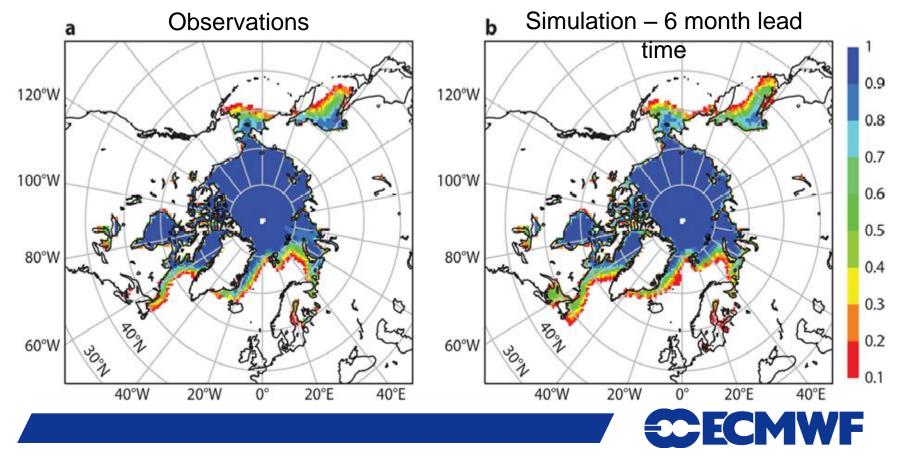
Slide 18, ©ECMWF

ERA-interim: core tool for model developments: Investigation: Forecast busts over Europe

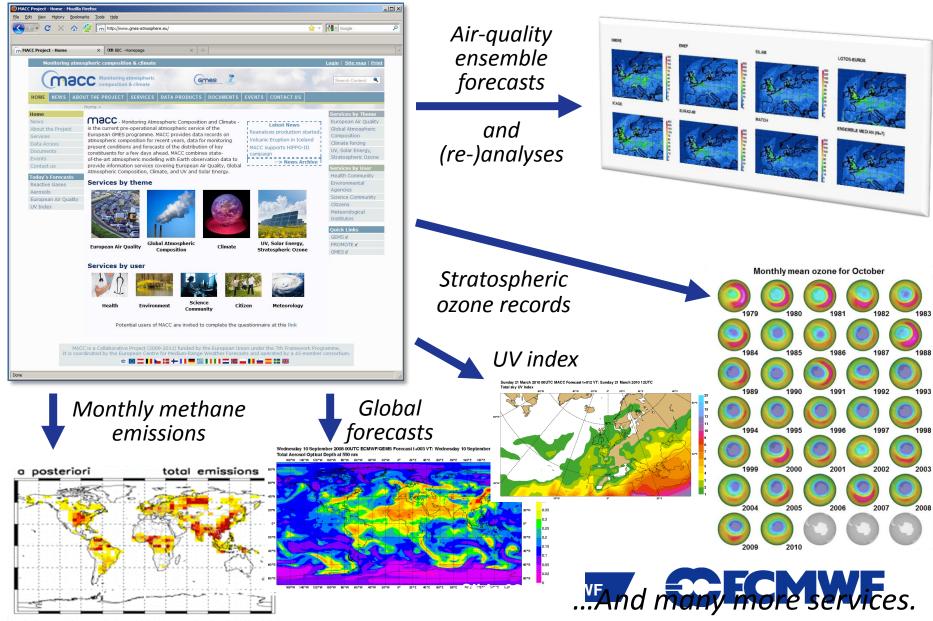
ERA-Clim

3-year collaborative research project coordinated by ECMWF, supported by the EC's FP7: Prepare input observations, model data, and data assimilation systems for a global (coupled) atmospheric reanalysis of the 20th century – to begin production in 2014 (**ERA-Clim-II project**)

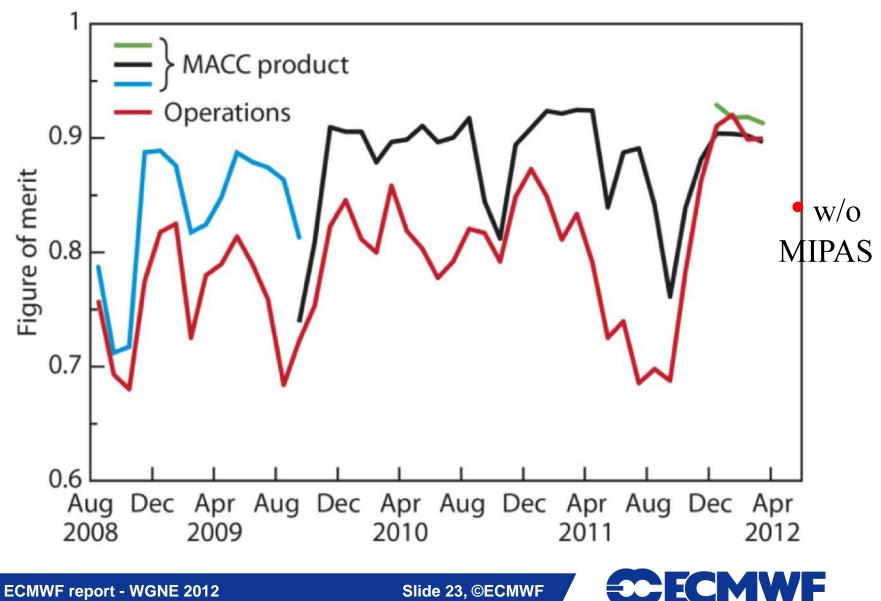
ERA-20CM	Ensemble of model integrations, using HadISST2 and CMIP5 forcing	T159 10 members	done
ERA-20C	Reanalysis of surface pressure observations	T159 10 members	Available end 2013
ERA-20CL	Land-surface only; forced by ERA-20C	T799 10 members	Available end 2013
ERA-SAT	New reanalysis of the satellite era	T511 (?) To replace ERA- Interim	Available end 2014


ECMWF report - WGNE 2012

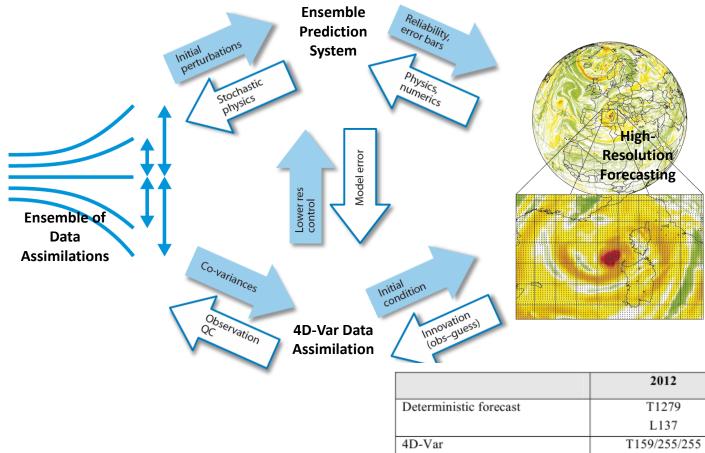
Slide 20, ©ECMWF


Sea-ice modelling

Preliminary seasonal integrations with LIM (the Louvain-Ia Neuve Ice Model) shows a fair agreement between the forecast and the observed ice cover.



http://www.gmesatmosphere.eu


Ozone headline skill score

ECMWF report - WGNE 2012

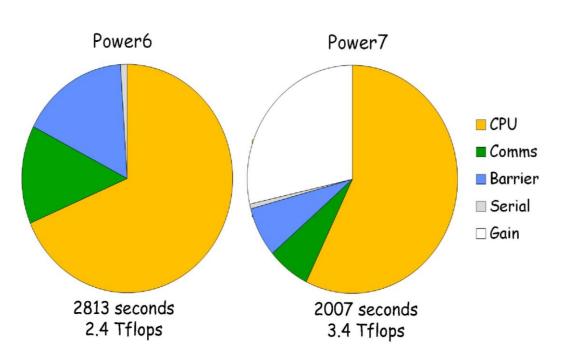
Slide 23, ©ECMWF

Longer-term future

A much more integrated system ...

to cope with
implications for
HPC cost

	2012	2015	2017
Deterministic forecast	T1279	T2047	T2047
	L137	L137	L137
4D-Var	T159/255/255	T159/255/399	T159/255/399
	L137	L137	L137
	12-h window	24-h window	48-h window
Ensemble data assimilation	T399	T511	T511
	L137	L137	L137
	10 members	25 members	50 members
	12-h window	12-h window	24-h window
Ensemble prediction system	T639v319	T1023v511	T1023v511
	L62	L92	L92
	50 members	50 members	50 members


ECMWF report - WGNE 2012

All this cannot happen without a solid infrastructure

I: Getting ready for HPC upgrade to p7

Performance comparison of IFS CY38R1 T1279L91 10 day forecast on IBM Power 6 versus IBM Power 7. Both systems used 48 nodes (384 MPI tasks and 8 OpenMP threads).

The full pie corresponds to the 2813 seconds wallclock time used to perform the forecast on p6.

Slide 25, ©ECMWF

IFS system developments

Continuous Observation Processing Environment (COPE):

- Unified data pre-processing, blacklisting, thinning, quality control
 - Quasi-continuous data processing

Object Oriented Prediction System (OOPS):

- Cleaner, more modular & scalable DA: top level in C++, lower levels in Fortran-90
- Data Assimilation algorithms manipulate a limited number of entities (objects):
 - x (state), y (observation); H (observation operator), M (model), H*, M* (adjoints); B, R, Q (covariance matrices)

OpenIFS:

- IFS model code modernization (modular, OOPS-standards)
 - Access to research/education for future enhancements

CECMWF

ECMWF report - WGNE 2012

Slide 27, ©ECMWF

Thank You

ECMWF report - WGNE 2012