WGNE 28 High Resolution Modeling

Compiled by Bill Lapenta & Gary Dietachmayer

Thanks to WGNE Members for the contributions

Observed Commonalities Across Operational Centers

Trends:

- Operational limited area models at > 5km horizontal resolution
- Designed for special applications
 - NOAA—Severe Wx (convection, hurricanes) and aviation
 - Meteo France---Fog
 - CMA– Flooding
 - UKMO & JMA—Coastal phenomena
 - BOM—coasts and cities
 - ECMWF—global application
- Trying to simplify/unify configurations
- Move toward rapidly updating systems—hourly DA and forecasts

Challenges:

- Data Assimilation methodology and control variables
- Physical representations
- Prediction of sensible weather elements
- Nesting & Computational costs
- Verification (development & customer)
- High resolution ensemble systems

An Important Pinpoint Prediction Challenge: The 29 June 2012 Mid-Atlantic Derecho

Radar observed

HRRR forecast

Composite Reflectivity (dBZ)

CMA: Heavy rainfall event on Jul.21/2012 Beijing

CPTEC: BRAMS 5 km resolution (experimental, under evaluation)

- Grid spacing: H 5 km x 5 km, V 50 to 800 m, model top @ 21 km
- Model domain: South America with 100 x 10⁶ (1360 x 1489 x 55) grid points
- Forecast length: 5 days, currently at 00 UTC, planned to include at 12 UTC
- Parameterization for deep convection: Grell version 3d with lateral spreading of environmental subsidence.

Remote Sensing Rainfall

125 90 75 65 55 45 105 37.5 155 15S 32.5 205 20S 27.5 22.5 25S 255 17.5 30S 30S 12.5 355

Model Rainfall – 24 hr accum.

Environment Canada's

High Resolution Deterministic Prediction System

1. Multi-grid 2.5 km HRDPS

- 1 operational domain (2 x 42-h runs)
- 4 experimental domains (1 x 24 h run)

→ Currently running

2. National-2.5 km- STAGE 1

- single, national grid
- 2 x 48-h runs
- high-resolution surface fields (CaLDAS)
- cycling of cloud fields
- detailed microphysics (to be upgraded) Simplify Grid Configurations
- increased vertical resolution

→ 2013

3. National-2.5 km – STAGE 2

- 4 x 48-h
- upper-air data assimilation cycle (EnVar*)
- **→** 2015

Environment Canada's

High Resolution Deterministic Prediction System

Future sequence for ICs and BCs (National-2.5 system):

JMA: Rapidly Updating Cycle

Forecast domain of LFM (Blue) and topography of MSM and LFM

00:00

01:00

02:00

A schematic figure of the rapid update cycle (generating an analysis at 0300UTC in this case). The cycle repeats assimilation by 3DVAR and 1hour forecasts (LF1). The cycle is executed at 5-km horizontal resolution.

03:00

Time(UTC)

创気象庁 Japan Meteorological Agency

Data Assimilation @ CAWCR / BoM

- Main focus on convective scale NWP
 - 1.5km, 3dVAR, latent heat nudging, Doppler winds
 - Centred on Sydney (central east coast)
 - population, obs coverage, high impact weather (t/storms, E.Coast Lows, fires etc.)
- 9 months trial, 3hourly 3dVAR
 - Hourly rainfall: 1.5km+3dVAR(3hour) no better than
 12km+4dVAR(6hour) interpolated to 4km... if start at same time
 - BIG advantage from more frequent update (compare "latest run")
 - Model rainfall bias major source of error
 - Skilful length scales still ~150km or more
 - Latent Heat Nudging: small positive gain for a few hours
- Clear air winds
 - Model comparisons show small bias

The Centre for Australian Weather and Climate Research

A partnership between CSIRO and the Bureau of Meteorology

Data Assimilation @ CAWCR / BoM

JMA: Impacts of assimilating observations near the surface

- Typical effects of assimilating the screened level temperature and wind (Shade: 1.5 m temperature, Wind barb: 10m wind)
- Position of the convergence line was corrected as well as temperature distribution

NOAA: Code Optimization for Operations

NMM-B (30 nodes): 12 hr fcst in 1619 s

WRF-NMM (30 nodes): 12 hr fcst in 5857 s

WRF-NMM takes 3.6 times longer to run comparable nesting with Fire Wx nest over CONUS

Observed Commonalities Across Operational Centers

Trends:

- Operational limited area models at > 5km horizontal resolution
- Designed for special applications
 - NOAA—Severe Wx (convection, hurricanes) and aviation
 - Meteo France---Fog
 - CMA– Flooding
 - UKMO & JMA—Coastal phenomena
 - BOM—coasts and cities
 - ECMWF—global application
- Trying to simplify/unify configurations
- Move toward rapidly updating systems—hourly DA and forecasts

Challenges:

- Data Assimilation methodology and control variables
- Physical representations
- Prediction of sensible weather elements
- Nesting & Computational costs
- Verification (development & customer)
- High resolution ensemble systems

All Center Inputs Follow

Preparation of AROME future configurations

- Increase of spatial resolution planned for AROME-France NWP system : ~1.3 km and ~90 vertical levels. On-going studies to define the future vertical resolution: simulation of low level clouds (fog, stratocumulus), timestep, assimilation of satellite observations, etc.
- Development of a nowcasting system based on AROME NWP model at 2.5km with hourly assimilations and short range forecasts (few hours)
- Evaluation of AROME-500m over dedicated areas (airports, mountains, ...): case studies of heavy precipitation and mountains waves, wake vortex dissipation over airport (SESAR European project), research on thermals parameterization in the grey-zone of turbulence

INSU

erver & comprendre

Vertical resolution (fog forecasting)COBEL (Bergot et al., 2005): 1D oper model for FOG forecast on airports.Characteristics: - Very high vertical resolution (1st level : 25cm)- Local assimilation scheme- Physics adapted to fogs (but warm 1-moment microphysics)

Evaluation of AROME/Méso-NH 1D on radiative fogs on CDG airport for 2 winters :

 \Rightarrow Same vertical resolution (COBEL grid) and same surface scheme (7 vertical levels) are the the two most important ingredients to include in AROME/Méso-NH 1D to have a comparable fog forecasting skill than COBEL model.

AROME 500m configuration

Cross section over the Pyrenees for the Xynthia storm case. Small scales Trapped Lee waves well captured at 500m res.

Heavy precipitations cases over south-east of France, 2-8 November 2011

An operational high resolution regional NWP system at JMA

Comparison between the specification of LFM and MSM

	Local Forecast Model (LFM)	Meso-Scale Model (MSM)
Horizontal Resolution	<mark>2km</mark> (551 x 801)	5km (721 x 577)
Vertical Layers	60 Layers up to 20km	50 Layers up to 22km
Integration Time Step	8 seconds	20 seconds
Initial Condition	Local Analysis (LA) JNoVA 3D-Var	Meso-Scale Analysis (MA) JNoVA 4D-Var
Boundary Condition	MSM	GSM
Forecast hours	9 hours	33/15 hours
Cloud Physics	Mixing ratio of cloud, rain, cloud ice, snow and graupel (Qc, Qr, Qi, Qs, Qg)	Qc, Qr, Qi, Qs, Qg and Number density of cloud ice
Cumulus convective parameterization	Not used	Kein-Fritsch scheme

Forecast domain of LFM (Blue) and topography of MSM and LFM

A schematic figure of the rapid update cycle (generating an analysis at 0300UTC in this case). The cycle repeats assimilation by 3DVAR and 1hour forecasts (LF1). The cycle is executed at 5-km horizontal resolution.

Japan Meteorological Agency

The ability of LFM to predict smaller scale phenomena

Example of 1 hour accumulated precipitation in which LFM predicted smaller scale convective cells than MSM .

Impacts of assimilating observations near the surface

Typical effects of assimilating the screened level temperature and wind (Shade: 1.5 m temperature, Wind barb: 10m wind). The position of the convergence line was corrected as well as temperature distribution.

High Resolution Modeling Activities in CMA Based on GRAPES_Meso

Upgrade activities

- •Vertical coordinate from terrain-following Z to hybrid coordinate (Schar, 2002)
- Inclusion of thermal expansion effect in continuity equation
- •Improve the interpolation accuracy in physics-dynamics interface
- •Refinement of 2-moment microphysics scheme
- •Some bug fix in land surface scheme
- •Refinement of back ground error covariance in 3DVAR

Current status

 Test run in Center for Numerical Prediction/CMA and Guangzhou Meteorological Bureau

Heavy rainfall event on Jul.21/2012 Beijing

Comparison of precipitation every 6-hour between Obs. & Fcst.

Plan in next two years

- Implement a very-short term forecast system with 3km resolution based on multi-model ensemble including GRAPES_Meso, WRF and ARPS (collaborate with Nanjing University)
- Data assimilation: hybrid DA (3DVAR+EnKF) (collaborate with Ming Xue, Oklahoma Univ.)

Environment Canada's

High Resolution Deterministic Prediction System

1. Multi-grid 2.5 km HRDPS

- 1 operational domain (2 x 42-h runs)
- 4 experimental domains (1 x 24 h run)
- → Currently running

2. National-2.5 km- STAGE 1

- single, national grid
- 2 x 48-h runs
- high-resolution surface fields (CaLDAS)
- cycling of cloud fields
- detailed microphysics (to be upgraded)
- increased vertical resolution
- **→** 2013

3. National-2.5 km – STAGE 2

- 4 x 48-h
- upper-air data assimilation cycle (EnVar*)
- **→** 2015

Environment Canada's

High Resolution Deterministic Prediction System

Future sequence for ICs and BCs (National-2.5 system):

Environment Canada's High Resolution Deterministic Prediction System

Simulation with prototype of National-2.5 Stage-1:

* Computed from hydrometeor fields from 2-moment microphysics scheme

ECMWF High-resolution modelling developments (inputs: Nils Wedi, Mats Hamrud, George Mozdzynski, Jean Bidlot, Geir Austad, Sinisa Curic)

Current and planned resolutions:

IFS model resolution	Envisaged Operational Implementation	Grid point spacing (km)	Time-step (seconds)	Estimated number of cores ¹
T1279 H ²	2010 (L91) 2013 (L137)	16	600	1100 1600
T2047 H	2014-2015	10	450	6K
T3999 NH ³	2020-2021	5	240	80K
T7999 NH	2025-2026	2.5	30-120	1-4M

1 - a gross estimate for the number of 'Power7' equivalent cores needed to achieve a 10 day model forecast in under 1 hour (~240 FD/D), system size would normally be 10 times this number.

2 – Hydrostatic Dynamics

3 – Non-Hydrostatic Dynamics More s

More speculative: extrapolated capability more than firm plans

(Wall-clock comp cost)*(N_{ref}/N)² in ms for spectral transforms, 1h simulation N truncation limit

T2047L137 model performance on HECToR (CRAY XE6) RAPS12 IFS (CY37R3), cce=8.0.6 -hflex_mp=intolerant

Going higher resolution: T_L3999 (5 km) wave fc (+24h)

24-hour forecast for significant wave height (colour shadings in metres) for 00 UTC on 25 November 2011:

- T1279 model coupled to a 0.25° global wave model (operational configuration, left)
- T3999 model coupled to a 0.1° global wave model.

SRNI//P 2012

ECMWE High-Res developments / / /

T1279 convective precipitation

ECMWF High-Res developments

T7999 large-scale precipitation (ran without deep convection parametrization)

WGNE28 2012

ECMWF High-Res developments

© ECMWF

Summary

- Fast Legendre transform is effective.
- Enabled 10-day forecasts at T3999 (~5km)
- Enabled 1st global, convection-permitting, nonhydrostatic IFS forecasts at T7999 (~2.5km)
 - Spectral technique still viable
- Future work:
 - Towards a cheaper non-hydrostatic option
 - Towards a more flexible software infrastructure
 - Vertical discretization aspects and stability
 - Is it technically possible to create a Reduced Gaussian Grid at T20000 (~1km) ?
 - Learn from the Gung-Ho project

ECMWF High-Res developments

CPEC

Emergency system for severe storms

- System remains in stand-by but ready to be executed at any time and limited area over South America.
- Applies BRAMS non-hydrostatic mesoscale model with 1 km resolution over 500 x 500 km² producing 36 hours forecast.
- With 600 processors on CRAY XE6, the run takes ~ 1 h.

O O X AdaptWebView - Iceweasel						
File Edit View History Bookmarks Tools Help						
Ver					Google	<u></u>
🛅 Most Visited▼ 🌘 Getting Started 🔂 Latest Headlines▼						
ADAPT - Mapa	Domínio da grade Escolha a data e hora inicial			I		
A 💠 🔊 🛱 🥖 ト	Inicial Final		Final -17.823	Data inicial Hora inicial		cial
· · · · · · · · · · · · · · · · · · ·	Longitude	-49.64	-41.532	12 Jan 2011	ooh ▼	
	Centro da e	grade	Tamanho do	pixel	Tamanho da r	natriz
	Latitude	-21.877	Delta x 3000	metros	NNXP 300	colunas
	Longitude	-45.586	Delta y 3000	metros	NNYP 300	linhas
A Start Starts	Logs					
	MakeSFG	MakeVFILE	Initial Rams	post		
	Nenhuma in	formação no m	omento			
23:00 15 30 45 0:00 15 30 45 1:00 1 10 Jan 11 Jan 12 Jan 13 Jan 14 Jan 15 Jan 15 Jan 16	B	RAN	IS-AD	ΑΡΤ		

BRAMS 1 km : NX, NY = 500, 500

Model comparison with observation: Distribuição Espacial e Quantitativa da Chuva

Cidade/Região	Observation 24h, mm	BRAMS 1 km (24h, mm)
Nova Friburgo (NF)	163	100 - 200
Teresopolis (TE)	79	30 - 100
Petropolis (PE)	8	1 - 15

BRAMS 5 km resolution (experimental, under evaluation)

- Grid spacing: H 5 km x 5 km, V 50 to 800 m, model top @ 21 km
- Model domain: South America with 100×10^6 (1360 x 1489 x 55) grid points
- Forecast length: 5 days, currently at 00 UTC, planned to include at 12 UTC
- Parameterization for deep convection: Grell version 3d with lateral spreading of environmental subsidence.

Remote Sensing Rainfall

Model Rainfall – 24 hr accum.

BRAMS 05 Km Análise Inicializada em: 11/7/2012, 00 UTC (Quarta-feira) Válida para: 12/7/2012, 12 UTC (Quinta-feira) Variável: Precipitação Acumulada em 24h/Pressão ao nível médio do mar CPTEC/INPE BRAMS 05 Km Análise Inicializada em: 11/7/2012, 00 UTC (Quarta-feira) Válida para: 12/7/2012, 12 UTC (Quinta-feira) Variável: Precipitação Acumulada em 24h/Pressão ao nível médio do mar CPTEC/INPE

Operational Mesoscale Modeling for CONUS:

North America Model (NAM)

- Implemented 18 October 2011
- NEMS based NMM
- Outer grid at 12 km to 84hr
- Multiple Nests Run to ~48hr
 - 4 km CONUS nest
 - 6 km Alaska nest
 - 3 km HI & PR nests
 - 1.3km DHS/FireWeather/IMET

Rapid Refresh (RAP)

- Implemented 1 May 2012
- WRF-based ARW
- Use of GSI analysis
- Expanded 13 km Domain to include Alaska
- Experimental 3 km HRRR

An Important Pinpoint Prediction Challenge: The 29 June 2012 Mid-Atlantic Derecho

Radar observed

HRRR 12-h forecast

Composite Reflectivity (dBZ)

10 15 20 25 30 35 40 45 50 55 60 65 70 75

Valid 11PM EDT 29 June 2012

Radar observed

HRRR 12-h forecast

Radar observed

HRRR forecast

Composite Reflectivity (dBZ)

Radar observed

HRRR forecast

NAM 1.33 km nest from 18z 10/29/12 1-h Maximum Wind Speed Gust (kt)

Data Assimilation @ CAWCR / BoM

- Main focus on convective scale NWP
 - 1.5km, 3dVAR, latent heat nudging, Doppler winds
 - Centred on Sydney (central east coast)
 - population, obs coverage, high impact weather (t/storms, E.Coast Lows, fires etc.)
- 9 months trial, 3hourly 3dVAR

 Hourly rainfall: 1.5km+3dVAR(3hour) no better than 12km+4dVAR(6hour) interpolated to

4km... if start at same time

The Centre Bil Gstraliad vantage from more frequent update Weather an Bil Gstraliad vantage from more frequent update Research A partnership bet (COMPORE "latest run")

Where to?

- Hourly DA
 - High resolution AMV's
 - Remove large scale from bkg. error covariance estimation
 - MTSAT cloud top info
 - Explore possibility of using some satellite radiances
 - ~1/3 domain is ocean
 - Doppler winds (rain & clear)

The Centre for Australian Weather and Climate Research Apartnethin petween CSIRO and the • Effect of meso DA fades by ~12hours (LBC's, predictability etc.)

Value-added by Latent Heat Nudging over 3dVAR Latent Heat Nudging + 3dVAR 3dVAR only

A partnership between CSIRO and the

APSO & SREP

4 hr

10 mm 20 mm