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e Recap of WGNE28

 Recent trends in ensemble-related research

e Accounting for model uncertainty

 Reforecasting and post-processing/calibration

e Multi-model ensemble issues and questions

e Coupling to other components (ocean, land surface)



Ensemble Summary from WGNE28 Report
Hamill and Muroi

Centers moving towards initial perturbations representative of analysis errors
This continues, especially with spread of Ensemble Kalman Filter DA Techniques

Operational and Research centers developing methods for improved

representation of uncertainty from model imperfections and inappropriate use of

deterministic parameterizations Fast-growing interest in accounting for model
uncertainty (PHY-EPS workshop Madrid 2013)

Review of NOAA’s GEFS reforecasts: statistical post-processing reduces forecast
bias and improves reliability Other examples include Meteo-France 21-yr PEARP
reforecasts, but reforecasting still not as widespread as it could/should be. Post-

processing techniques have proliferated in the last several years.
Increased development of cloud-permitting regional ensembles: How well is this

community organized? Many examples of high-resolution ensembles exist,
meetings such as PHY-EPS bring community together.
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Research in Model
Uncertainty grows rapidly
in the last three years.

Interest in calibration and
post-processing also
substantially larger than
in the early 2000s.



Growing Interest in Accounting for Model Uncertainty

PHY-EPS WORKSHOP 2013

JOINT SRNWP WORKSHOP PHYSICAL PARAMETRIZATIONS AND ENSEMELE PREDICTION SYSTEMS

WELCOME INFORMATION 2ND ANNQUNCEMENT REGISTRATION FORM

Joint PHY-EPS Workshop
fe

HOTEL EQOKIN{

Schemes: SKEB, SPPT, multi-physics,
parameter variations, humidity
perturbations, stochastic
microphysics, stochastic convection

Mesoscale Models: WRF,
MOGREPS, ALADIN/HARMONIE,
AEROME, COSMO

necessary to understand impacts.

characteristics of uncertainty

Recommendations:
eIntroduce stochasticity only where appropriate (maintain physical meaning).
*Sensitivity studies and process studies, in addition to predictability studies, are

eParameter perturbations useful diagnostic to understand spatio-temporal

model perfurbations. In parficular the focus is on:

B how

to identify the uncerfainties In

the physical parametrisations
should be taken into account (including predictability sfudies].
#¥» how to best describe the uncertainties in the physics of the model:

perturbations [parameter perturbation, multi-physics.pe

tendencies, ...) inherently stochastic parametrisation schemes

which

"static"
rturbafion of physics
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A new set of NOAA reforecasis—now featuring a current operational model and a wider set of
variables archived in higher resalution—is freely accessible to the weather forecast community.

“Those who cannot remember the past are condemned fo repeat it."

—George Santayana

he weather and climate prediction community
T have made continued, significant improvernent

in the quality of numerical forecast guidance.
This has come as a result of increased resolution;
improved physical parameterizations; improved
chemistry and aerosol physics; improved estimates of
the initial state estimate due to better data assimila-
tion techniques; and improved couplings between the
atmosphere and the land surface, cryosphere, ocean,
and more. Nonetheless, judging from the pace of past
improvements, medium-range forecast systematic
errors will not become negligibly small within the
next decade or two. For intermediate-resolution
simulations such as those from current-generation
global ensemble systems, users of forecast guidance
may notice biased surface temperature forecasts,
precipitation forecasts with insufficient detail in
mountainous terrain, or perhaps too much drizzle
or too little heavy rain. They may notice over- or
underestimated cloud cover or that near-surface
winds are characteristically much stronger than fore-
cast. They may notice that hurricanes are too large

in size but less intense than observed. Sometimes,
however, systematic errors may be less obvious. Does
the model forecast of the Madden-Julian oscillation
(M]JO; Zhang 2005) propagate too slowly or decay
too quickly? Are Arctic cold outbreaks too intense,
and do they plunge south too quickly or too slowly?
Does the model overforecast the frequency of tropi-
cal cyclogenesis in the Caribbean Sea? Do tropical
cyclones tend to recurve too quickly or slowly? Such
questions may be difficult to answer quantitatively
with a month or even a year of model guidance.

In such circumstances, reforecasts can be used to
great advantage to distinguish between the random
and the model errors. Reforecasts are especially help-
ful for statistically adjusting weather and climate
forecasts to observed data, ameliorating the errors
and improving objective guidance (Hamill et al.
2006; Hagedorn 2008). Reforecasts, also commonly
called hindcasts, are retrospective forecasts for many
dates in the past, ideally conducted using the same
forecast model and same assimilation system used
operationally.! Reforecasts have been shown to be

! We prefer the term “reforecast” in this instance to “hindeast” soas to make the association in the reader’s mind with reanalyses.

This reforecast would not have been very useful were there not a high-quality reanalysis to provide initial conditions, here

from the NCEP Climate Forecast System Reanalysis.

AMERICAMN METEOQROLOGICAL SOCIETY

QCTORER 2013 BAMY | 1553

Reforecasting benefits
well documented
(NOAA GFS, ECMWEF,
ARPEGE, COSM-LEPS*®),
however, issues remain
concerning broader
adoption.



Tension?

High
performance
computing

Higher-resolution models, Retrospective forecasts
more models, run more
frequentl e s

: Y Reanalyses to initialize
Improved assimilation methods retrospective forecasts
Improved physics More stable models

Frequent model updates

More ensemble members



Are there ways to decrease the
number of reforecasts needed?
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Reforecast Challenges

e Reforecasts require past initial conditions with
accuracy like that of real-time analyses. Hence,
regular reanalyses needed.

— Also, ensembles of initial conditions generated in the
same manner as real-time ensemble.

e Ensemble systems such as the SREF that use
different models, different physics may have
larger reforecast requirements than systems with
“exchangeable” members. We may need a
reforecast for each member, with its unique
biases, or need to rethink the SREF configuration.



Number of multi-model ensembles are growing

Mesoscale: TIGGE-LAM, NOAA SREF, AEMET-SREPS, SESAR, CAPS, HFIP
Global 1-2 weeks: NAEFS, NUOPC, TIGGE, HIWPP
Subseasonal to seasonal: NMME, DEMETER,

Why do multi-model ensemble often outperform single model ensembles? Is the
improvement in skill due to larger ensemble size or to combining signals?

International Conference on S2S prediction, 10-13 Feb 2014

Differences in Skill and Predictability in 1. Proposed an objective procedure for deciding if the skill of a
Multi-Model Ensembles combined forecast is significantly higher than a single forecast.

2. Skill of each model in NMME is significantly enhanced by combininy
Timothy DelSole it with other models, at least for some lead time and target month.

George Mason University, Fairfax, Va and 3. The skill improvement comes from combining different signals, not
Center for Ocean-Land-Atmosphere Studies, Calverton, MD from ]ncreasing ensemble size.

How does one combine multi-model forecasts of unequal skill? Equal weights
competitive with more complex schemes (DelSole et al. 2012, Sansom et al. 2013, ...)

Tradeoffs between independence from multi-models vs. focusing resources on
one system.

Issues of latency, data transfer reliability, etc. 0




SESAR EU project:
test multi-ensembles (for aviation)

Arome+UKV+COSMODE = 12+12+20 members = 44 members

all members have equal weight

model’'s domain edge) & simi

he overlap zones.

3-model PDF precip
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'far resolution ~ 2.5km
Ob};ec’rive scores: multi-ensemble usually better than each ensemble in
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Mean T2m(C) 2012080500+09
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More centers are testing coupling to (or incorporating
uncertainty from) other components of the earth system

Examples include:

*ECMWEF land surface perturbations

*Met Office GloSea ocean coupling

Meteo France AROME EPS surface pertrubations

sDWD COSMO-DE-EPS: Perturbed soil moisture

*CMC: surface and near surface model error representation.
*NRL Coupled COAMPS ET, SST perturbations for NAVGEM
*NCEP: by 2018, one/two way coupling with ocean model and
perturbed land surface

Potential Issues: Peter Houtekamer notes that as system become coupled
(land/ocean/atmosphere/ice), they become increasingly more complex. Ensuring that
coupled systems out-perform un-coupled ones will require close collaboration amongst
the groups working on the different components.

12






GloSea-Medium Range (MR) Project

Met Office

Assess sensitivity of short-/medium range ensemble forecast skill to:

e Resolution: N216 (60km) MOGREPS-15 vs N400 (~32km)
MOGREPS-G -> positive impact in week 1 shown in a)

e Ocean coupling: Atmosphere only MOGREPS-15 vs coupled O-A
GLOSEA-MR -> neutral impact in week 1-2 shown in a)-b).

Decisions: Do not implement GloSea-MR, retire MOGREPS-15, use
ECMWF/multi-model for weeks2-4, extend MOGREPS-G to 7 days.
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,ﬁ-&* Cy40rl: EDA-based land-surface pert. in ENS ICs

Initial perturbations have been improved by stronger coupling of the ensemble of
analyses and forecasts.

The perturbations to
the land surface ICs
increase the ENS
spread of 2mT. The
difference is largest
in some situations,
e.g. if there is
uncertainty
associated with
snow cover which
can lead to large _ : :
differences in 2m 20 g 9, 1§6km)§

2m Temperature (° C)

temperature 6 12 18 24 30 36 42 48 54 60 66 72
between the Step (h)

ensemble members.

o) ; ;
wECMWF WGNE: ECMWF Ensemble forecasts developments in 2013 15 © ECMWE
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Northern Hemisphere 500hPa height:

30-day running mean scores of day-10
CRPS skill score

RMS error and ratio of RMS error / spread
Anomaly correlation

All other regions could be seen from:
http://www.emc.ncep.noaa.gov/gmb/yluo/na
efs/VRFY STATS/T30 P500HGT




Different model uncertainty methods can be
complementary (many examples) GET IMAGE

Evaluation of Different Model-Error
schemes in the WRF mesoscale ensemble
Joint SRNWP Workshop physical parameterizations and ensemble prediction
systems, June 18-21, Madrid, AEMET HQ

Judith Berner (NCAR)

Acknowledgements: Kate R. Smith, So-young Ha, Josh Hacker, Chris Snyder

Conclusions

Experiment Model-error representation Color
CNTL Control Physics blue
SKEBS Stochastic kinetic-energy red
| | backeoniter schame | Model-error schemes improve forecast skill by
SRR Attty adariad improving both, reliability and resolution
_ physics tendencies _
PHYS10 Multi-physics (10 packages) green The impact is of comparable magnitude to that of
| | | common postprocessing methods
PHYS10_ SKEBS | Multi-physics (10 packages) + magenta
| + SKEBS | Combining multiple model-error schemes yields
‘ PHYS3 SKEBS Limited multi-physics + black cons|stent|y best results
(3 packages) + PARAM + SKEBS |




Advantages of post-processing with reforecasts well
established (e.g., Hamill et al. 2013)

Post-processing methods for
short-range ensemble forecasts
L.Descamps, C. Labadie
Meétéo-France DIRIC/PREVI

Météo-France CNRM/GMAP/RECYF

Use of Météo-France operational system PEARP
SPP of 24-h rainfall amount over France

one-month period : June 2010

o o o ©

Use of a 21-year reforecast data set

» and also a sliding window of 45 days using the
most recent available forecasts

#® Use of SAFRAN reanalysis as reference

Techniques: Simple bias correction; CDF-
based correction; Rank-Analog; Logistic
Regression; BMA

# Comparison of various methods for statistical
post-processing (SPP) of precipitation
s What is the best technique ?
#® The need for a reforecast data set
» Can we do good job without reforecast data set ?

® |Interest for rare’ events

s Can we improve probabilistic prediction or rare’
events ?

Conclusions and Questions

Probabilistic predictions can be greatly improve by
using statistical post-processsing

No method is better than the others for all
thresholds at all lead times

All methods have drawbacks
Better scores for moderate and high thresholds with
a reforecast data set as training period

» Should we include the numerical cost of the
reforecast in the global cost of EPS 7

» How long should be the reforecast data set if we
want to do good job for very high thresholds (40,
50 or 60mm) ?

Post-processing techniques area of active research




Instituting Reforecasting
at NCEP/EMC

Tom Hamill (ESRL)
Yuejian Zhu (EMC)

Tom Workoff (WPC)
Kathryn Gilbert (MDL)
Mike Charles (CPC)

Hank Herr (OHD)
Trevor Alcott (Western Region)
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Exciting new products
are also possible.

8.5 to 11.5 — day tornado forecast, 4/11/1996

Francisco Alvarez at

i

C
w ] st Louis University,
~ —=4 is working with me

- 'La AW and others on using the
. ~ ‘ h l reforecasts to make

/ ; 5; extended-range

o

predictions of
tornado probabilities.

Ph.D. work,
in progress.
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Many methods of post-processing.

CDF-based bias correction
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Many post-processing methods, not all are equally skillful

TABLE 1. Brier skill score for various forecast techniques at 2.5 mm, averaged over the 25 years. The last row provides the amount
of difference between two forecasts that is considered statistically significant according to a two-sided test with & = 0.05 (cf. Wilks 1995,
p. 117). Highest score for a particular day is in boldface type.

Day
Technique 1 2 3 < 5 6

- —0.0486 —0.1098 —-0.1624 -0.2117 —0.2552
2) Bias-corrected relative frequency : 0.1753 0.0597 —-0.0424 —-0.1318 —-0.2033
I o 0.3443 0.2648 0.1923 0.1335 0.0853

5) Basic using individual members 0.4061 0.3414 0.2555 0.1774 0.1155 0.0692
6) Basic including precipitable water 0.4080 0.3486 0.2687 0.1969 0.1378 0.0898
7) Basic including 2-m temperature and 10-m winds 0.3803 0.3312 0.2565 0.1881 0.1319 0.0875
8) Rank analog 0.4195 0.3555 0.2726 0.1965 0.1360 0.0865
9) Rank analog with smaller search region 0.4194 0.3496 0.2635 0.1871 0.1272 0.0791
10) Smoothed rank analog 0.4260 0.3613 0.2779 0.2020 0.1415 0.0925

Difference that is statistically significant, two-sided test, « = 0.05. 0.0010 0.0009 0.0008 0.0007 0.0006 0.0006
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Post-processing skill often
depends on training sample size.

(a) BSS of 2.5 mm forecasts (b) BSS of 25 mm forecasts
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FiG. 7. Brier skill scores of the analog reforecast technique for various lengths
of the training dataset. Probabilistic forecasts were calculated for ensembles
of sizes 10, 25, 50, and 75; the skill of the ensemble size that was most skill-
ful is the only one plotted. The color of the dot denotes the size of the most
skillful ensemble.

Ref: Hamill et al. BAMS, 2006

There is more skill
dependence on training
sample size for the
heavy precipitation
(uncommon) than for
light precipitation.

For many of the projects
such as the “blender
project” we are asked

to calibrate variables
such as precipitation
that have this strong
sample-size dependence.
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“Regionalization,” or training with data from
supplemental locations can help (and hurt, too).

Analog locations and 95th percentile of forecasts, 096 to 120-h forecast, Jul

5o V

0 1 3 5 10 15 20 30 40 50 60
Precipitation amount, 95th percentile (mm)

Ref: Hamill, yet unpublished work.

Here, for a given grid point
(big symbol) supplemental
training data locations

are identified that have
similar forecast, observed
climatologies. Approaches
such as this can enlarge the
training sample size, but
sometimes forecast biases
are very regionally specific,
and this degrades the
post-processing
performance.



A mutual desired outcome?

Rapidly improving models, assimilation methods, ensembles

An institutionalized, light-footprint reforecast capability to make
the raw guidance even better
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