Using atmospheric CO₂ for Earth System Model evaluation

Carbon cycle modelling through ACCESS-ESM1 with a focus on atmospheric transport, CABLE coordinator CSIRO Marine and Atmospheric Research 11th March 2014

www.cawcr.gov.au

Australian Government

Bureau of Meteorology

Outline

- Components of ACCESS-ESM1
- Testing and results from component models
 - Land-atmosphere only
 - Ocean only
- Initial ACCESS-ESM1 runs with prescribed atmospheric CO₂
- Why use atmospheric CO₂ to evaluate carbon fluxes
- Common diagnostics seasonal cycle
- Much more information available
 - Cape Grim and SE Australian fluxes
 - Macquarie Island and southern ocean fluxes

- Land carbon fluxes from CABLE2 with biogeochemistry
- Ocean carbon fluxes from WOMBAT (World Ocean Model of Biogeochemistry And Trophic-dynamics), includes a two-component plankton model (phytoplankton and zooplankton)

CABLE2 with biogeochemistry

Present-day land carbon flux: Seasonal cycle: 20 year average

Red: prescribed LAI (1978-1987) Blue: prognostic LAI (1978-1987) Green: nutrient limitation (1986-2005) Black: CMIP5 models (1986-2005 from historical run, Anav et al., J. Clim, 2013)

Australian Government Bureau of Meteorology

Global Land Carbon Fluxes

Bureau of Meteorology

- Prescribed LAI (green) less variable than prognostic LAI (red). Nutrient limitation (blue)
- Correlation between interannual variations in mean temperature (top) and land carbon flux (bottom)

Ocean carbon flux to 2100

Carbon flux into the ocean

Ocean acidification

Impact on surface Aragonite Saturation State

- ACCESS RCP 8.5 scenario (2072 shown)
- Under-saturated water (< 1: purple) in the Southern Ocean
- (aragonite shells of pteropods liable to dissolve)
- Loss of Coral Reef habitat
 around Australia (requires saturation state > 3: orange/red)

ACCESS-ESM1: pre-industrial

Carbon fluxes: run with prescribed atmospheric CO₂

Annual mean net ocean (blue) and land (red) carbon flux to atmosphere.

Aim is zero flux under preindustrial conditions.

Long spin-up times for carbon pools

Modelled atmospheric CO₂

- Land and ocean carbon fluxes input to atmosphere as passive tracer
- Measure of seasonal amplitude at each grid-cell in lowest model level: year 120 maximum month minimum month

Australian Government Bureau of Meteorology

Atmospheric CO₂ for evaluating carbon flux

Flasks (blue); In-situ, hourly (red)

Model-obs comparisons

'Baseline' selection Diurnal cycle Model sampling location (coasts, mountains) Flux error or transport error? World Data Centre for Greenhouse Gases: http://ds.data.jma.go.jp/gmd/wdcgg/ Globalview-CO2 (data product) : http://www.esrl.noaa.gov/gmd/ccgg/globalview/

Mauna Loa figure: http://keelingcurve.ucsd.edu/

Common diagnostics

21% < 2 days

44% 2-6 days

35% > 6 days

← 1.5 day → ← 5.6 day → ← 22 day →

Law, R. M., Steele, L. P., Krummel, P. B., and Zahorowski, W. (2010) Synoptic variations in atmospheric CO_2 at Cape Grim: a model intercomparison, Tellus 62B, 810-820.

Radon $R^2=0.90$

Missing peaks due to Tasmania. Common problem for radon and CO_2 . Exclude Tasmania using wind direction (70-190°), number of events with correlation > 0.6 increases from 16% to 30%. Radon R²=0.93

 CO_2 R² = 0.21 (casa) R² = 0.29 (SiB)

Red: Casa 3 hr Green: SiB 1 hr

CASA August flux

Drawdown periods – carbon uptake

- Identify all periods when CO₂ drops more than 2 ppm below baseline
- 2002-2003 observations: 52 cases. Ensemble mean model CASA 29, SiB 4

Difference in seasonality of below baseline CO₂ suggests difference in seasonality of carbon uptake

Winter crops in Western Victoria??

Macquarie Island CO₂ and Southern Ocean carbon flux

Opportunities

- •Continuous year round measurements
- Atmosphere provides integrated signal from large region
- Sampling region varies on synoptic timescales

Challenges

- Logistics
- Long storage times for flasks
- Limited access to service instruments
- Harsh conditions
- Low CO_2 gradients need high precision data for detectable signals

Macquarie Island atmospheric CO₂

First in-situ measurements: 17 April 1979

•Technology of the time not up to the task

Contemporary record

- CSIRO LoFlo Mark 2 analyser from April 2005
- Minute measurements averaged to hourly,
- High precision

How best to extract information?

Australian Government Bureau of Meteorology