

Center Report - JMA 2012 -

Chiashi Muroi and colleagues at JMA 5-9 Nov. 2012, Toulouse WGNE-28

SUPER COMPUTER UPGRADE AND NWP SYSTEMS AT JMA

New Super Computing Systems

	New	Old
Machine	Hitachi SR16000/M1	Hitachi SR11000/K1 Hitachi SR11000/J1
CPU	Power 7 (3.83GHz, 8core)	Power 5 (1.9GHz), Power 5+ (2.1GHz)
CPU/NODE	4 processors (total 32cores)	16 processors
NODE	864 (432x2)	210 (80x2+50)
Peak Performance	847 (423.5x2) T Flops	27.5 (10.75x2+6) T Flops
Main Memory	108 T Byte	13.1 T Byte
operation was started on	5 June 2012 -	1 March 2006 -

HPC at **NWP** centers

Current NWP models of NPD/JMA

New Control of the Co					
	Global Spectral Model (GSM)	Meso-Scale Model (MSM)	Local Forecast Model (LFM)	One-week Ensemble (WEPS)	Typhoon Ensemble (TEPS)
Objectives	Short- and Medium- range forecast	Disaster reduction, Short-range forecast	Disaster preventing Aviation forecast	One-week forecast	Typhoon forecast
Forecast domain	Global	Japan and its surroundings (3600km x 2880km)	Eastern Part of Japan (1100km x 1600km)	Global	
Horizontal resolution	T _L 959(0.1875 deg)	5km	2km	T _L 319	(0.5625 deg)
Vertical levels / Top	60 0.1 hPa	50 21.8km	60 20.2km	60 0.1 hPa	
Forecast Hours (Initial time)	84 hours (00, 06, 18 UTC) 216 hours (12 UTC)	15 hours (00, 06, 12, 18 UTC) 33 hours (03, 09, 15, 21 UTC)	9 hours	216 hours (12 UTC) 51 members	132 hours (00, 06, 12, 18 UTC) 11 members
Initial Condition	Global Analysis (4D-Var)	Meso-scale Analysis (4D-Var)	Local Analysis (3D-Var)		al Analysis perturbations (SV)

Data assimilation systems of NPD/JMA

			New
	Global Analysis (GA)	Meso-scale Analysis (MA)	Local Analysis (LA)
Analysis scheme	4DVar		3DVar
Analysis time	00, 06, 12, 18 UTC	00, 03, 06, 09, 12, 15, 18, 21 UTC	00, 03, 06, 09, 12, 15, 18, 21 UTC
Data cut-off time	2 hours 20 minutes [Early Analysis] 11 hours 50 minutes (00, 12 UTC) 7 hours 50 minutes (06, 18 UTC) [Cycle Analysis]	50 minutes	30 minutes
Horizontal resolution (inner-model resolution)	T _L 959 / 0.1875 deg (T _L 319 / 0.5625 deg)	5 km (15 km)	5km
Vertical levels	60 levels up to 0.1 hPa	50 levels up to 21.8km	50 levels 21.8km
Assimilation window	-3 hours to +3 hours of analysis time	-3 hours to analysis time	-

Specifications of seasonal EPSs

	1-month EPS	4/7-month EPS	
Model	AGCM	CGCM	
Resolution	Horizontal: approx. 110 km (TL159) Vertical: 60 levels (~0.1 hPa)	* Atmospheric component Horizontal: approx. 180 km (TL95) Vertical: 40 levels (~0.4hPa) * Oceanic component Horizontal: 1.0° longitude, 0.3–1.0° latitude (75°S – 75°N) Vertical: 50 levels	
Forecast range	Up to 34 days	7-months (for summer/winter forecast) 4 months (other initial month)	
SST	Persisted anomaly	Prognostic variable of CGCM	
Sea ice	Climatology		
Ensemble method	Combination of Breeding of Growing Modes (BGM) and Lagged Average Forecast (LAF)		
Ensemble size	50	51 (9 BGMs & 6 days with 5-day LAF)	
Frequency of operation	Every Wednesday and Thursday	Every 5 days	
Frequency of model product creation	Once a week Every Friday	Once a month Around the 20th (no later than the 22nd) of every month	

Strategy

Development

- physics and dynamics-
- Under development
 - Dec.? 2012: 11 days forecast (<- 9 days) for both deterministic and ensemble system.
 - Dec.? 2012: Revise cloud scheme
 - Q1 2013?:
 - Update aerosol optical depth climatology
 - Revise shortwave absorption by water vapor in radiation scheme (Collins et al. 2006)
 - 2013?: Increasing the number of vertical levels (top:0.1->0.01 hPa)

11 days forecast (<- 9 days)

Revise cloud scheme

If "inversion layer" is detected in vertical column, low level stratocumulus is generated in the grid.

$$\left| \frac{\partial \theta}{\partial P} \right| > 0.07$$
 [K/hPa] (0: Potential temperature, P: pressure)

Stratocumul lus area

Stratocumulus is predicted over the Sahara Desert..

Additional condition: RH

$$RH = \frac{q + cwc}{q_{sat}(T_L)} \ge RH_c$$
 $T_L = T - \frac{L}{C_p}cwc$

Analyzed Field (Plane: 1 PSEA, Z500, T850 and TPW)

Compare H001_Sc80_rev3_nof_201108(TEST) to H001_Cntl_201108(CNTEst:H001_Sc80_rev3_nof_201108 Period: 2011 07/21 - 2011 08/31 Cntl:H001 Cntl 201108

- Psea: アフリカ南 部、北米北西部、 南米中部で低下。
- T850: 陸域で上 昇。とくにアフリ カ南部。ナミビア 沖の層積雲領域 で上昇。
- Z500:下層気温 上昇で全体的に 上昇。

Update of aerosol climatology of GSM

- Climatological aerosol is used in calculation of aerosol direct effect
- Seasonal variation of horizontal distribution is considered
 - Monthly averaged climatological distribution of vertically accumulated optical depth derived from satellite observation is used
- JMA plans to update aerosol optical depth climatology
 - Use new satellite data, extend period for climatology calculation
 - New optical depth tends to be smaller over land (especially over the Antarctica and over desert) than current optical depth
 - Closer to observations by sun photometer
- Seasonal variation is not considered for vertical distribution (not updated)
 - Vertical distribution of optical properties climatology
 - Continental type and maritime type

Difference between two optical depths

Current climatology

New climatology

(New)-(Current)

January

August

One-month average radiation flux (winter)

Downward shortwave radiation flux at surface (W/m²) (New)-(Current), 2012/01/01 00UTC init

Climatology of vertically accumulated aerosol optical depth in January (New)-(Current)

Data assimilation experiment (winter)

Changes in analyzed field

Less shortwave radiation absorption by aerosol → colder lower troposphere → higher surface pressure and lower geopotential height field

Improvement rates of forecast scores

Forecast scores are improved mainly over the southern hemisphere.

Shortwave absorption by water vapor

- Collins et al. 2006
 - Revise shortwave heating rate by water vapor

Red: Collins et al.2006

Green: Briegleb 1992

Blue: LBL

Changes of temperature bias in winter in TR

Against sonde

Negative bias of temperature against analysis at the middle-low level troposphere is improved due to the revised shortwave

Development – assimilation, data-

- Recent changes
 - 25 Oct 2011: Update of Global Analysis inner model of 4D-Var and update observation errors
 - 30 Aug 2012: Cut-off time changes in cycle analysis
 - For 00 and 12UTC: 11h35m -> 11h50m
 - For 06 and 18UTC: 5h50m -> 7h50m
- Under development
 - Nov.? 2012: RTM upgrades (RTTOVv9.3 →v10)
 - Dec.? 2012: GNSS-RO observation operator upgrades
 - Q1? 2013: Introduction of AIRS, IASI
 - EnKF, Hybrid assimilation

Global 4D-Var Enhancement

- The inner model was upgraded about
 - adoption of semi-Lagrangian scheme
 - adoption of adaptive grid

Both of them were already introduced in the forecast model in some years ago.

- increase of model resolution (T159 \rightarrow TL319)
- Observation error variances were revised at the time.
- The impact test
 - showed improvement on Z500 forecast RMSE over NH.

Japan Meteorological Agency

Improvement on GNSS-RO usage

Improvement [%]

Tropics -- S. Hem.

Better

Worse

Forecast time [hr]

- Addition of new satellites/sensors
 - SAC-C, GRACE-A, TerraSAR-X and C/NOFS
- Revision of the observation operator
 - Several inappropriate configurations were fixed,
 - So that the bias correction procedures can be eliminated.
 - # Use of bending angle instead of refractivity is the next step

Development – EPS -

- Under development
 - Dec.? 2012: 11 days forecast (<- 9 days)
 - Increase model resolution (from TL319L60 to TL479L100)
 - Increase the members (from M11 to M25) in TEPS
 - 2013?: Start test operation of Meso-scale regional EPS

	Operation		Planned	upgrades
	One-week EPS	Typhoon EPS	One- week EPS	Typhoon EPS
Horizontal resolution	TL319 (~55km)		TL479 (~40km)	
Vertical levels	60 levels up to 0.1hPa		100 levels u	p to 0.01hPa
Initial time	12UTC	00,06,12,18UTC	00,12UTC	Not changed
Ensemble size	51	11	27	25

Winter monsoon

- Typical weather with winter monsoon
 - Upwind orographic precipitation and stripe precipitation pattern in Pacific
- Experiments shows finer precipitation pattern
- Not so obvious difference of upwind orographic precipitation between operation and experiment

Unperturbed member of the EPSs, initial time 23 DEC 2011 12UTC, FT 72 hr

Impact in precipitation probability

In some cases, there is a difference near border of orographic precipitation

Probability of precipitation exceeding 1mm/24hr

Development – regional -

- Recent changes
 - Aug 2012: 2km-LFM/LA operation was started
- Under development
 - Nov.? 2012: RTM upgrades (RTTOVv9.3→v10) in MA
 - Mar? 2013: 5km-MSM configuration upgrade
 - Expand the model domain
 - Extend the forecast range (36 or 39 hours <-15hours/33hours)
 - May? 2013: 2km-LFM configuration upgrade
 - Increase the operation frequency from three-hourly to hourly
 - Expand the model domain (whole Japan region <- Eastern Japan)
 - Increase the model levels (from 50 to 75)
 - Raise the model top (TBD). Enhancement of land surface scheme
 - new dynamical core for the non-hydrostatic model "ASUCA"
 - 2013: Start test operation of the EPS system

Specifications of LFM

	Local Forecast Model (LFM)	Meso-Scale Model (MSM)	
Horizontal Resolution	2km (551x801)	5km (721x577)	
Vertical Layers	60 Layers, up to 20km	50 Layers, up to 22km	
Integration Time Step	8 second	20 second	
Initial Condition	3D-Var RUC	4D-Var	
Boundary Condition	MSM	GSM	
Forecast hours	9 hours	33/15 hours	
Cloud Physics	Qc, Qr, Qi, Qs, Qg	Qc, Qr, Qi, Qs, Qg and Ni	
Cumulus convective parameterization	Not Used	Kain-Fritsch scheme	

LFM/LA operation

- The objectives are to provide information for aviation weather forecast and disaster prevention with high resolution NWP
- Operation has just started in Aug. 2012

Local Analysis

- Specifications
 - Horizontal resolution is 5km, 50 vertical layers
 - Model domain: 2200km x 2500km (441x501grid)
 - Analysis time: 00,03,06,09,12,15,18,21 (UTC)
 - hourly observations are assimilated
 - Observation cut off time is 30 minutes (Very Short!)
 - Data assimilation method: 3D-Var by Rapid Update Cycle (RUC)
 - Assimilated observations:
 - AWS (AMeDAS)
 - Aircraft observations
 - WPR (Wind profiler)
 - Doppler velocity
 - Ground based GPS

Quantitative precipitation forecast

2011 July. 29 06UTC 3hourly precipitation

Future Plan

- Review the system enhancement configurations
 - Domain configuration
 - Vertical layer configuration
- Develop and Improve the NWP system
 - Forecast model
 - Data assimilation system

- Develop and improve the assimilation methods of observations
 - Radar (Reflectivity)
 - Satellite (Atmospheric Motion Vector and Clear Sky Radiance)

Timeline	Domain	Period
Operation	Eastern part of Japan Japan and its surroundings	Aug. 2012 – May 2013 May 2013 –

Physics Library

- 1-dim implementation
- Low memory usage to improve cache efficiency as well as easy to develop.
- Independent components and similar structures of public subs.
- Output: temporal tendencies without input variables changed.

- Testing environments: based on some international intercomparison projects
 - As one of the applications of the library
 - Used to evaluate each of the components
 - Serve sample codes to show how to implement the library into users' models.
- •Documenting rules: inline documents on interfaces

Code for GPGPU

CUDA In Dynamical Core

Our approach: GPU-based ASUCA Full GPU Application GPU-ASUCA is written from scratch in CUDA Fortran Program implicit none void init(int *a){
dx.x) = threadIdx.x+1; #include clude <cuda. for(i=0;i<10;i++) int *a; cudaMalloc(&a,sizeOf(int)*10) end program init init<<<1,10>>>(a); ✓ Original code ✓ Reference for √ GPU code at JMA Implementation & Performance Element order of 3 dimensional arrays z,x,y (k,i,j)-ordering x,z,y (i,k,j)-ordering x,z,y (i,k,j)-ordering Improve the memory access performance of the GPU computing Hybrid for Physics Library

T.Shimokawabe@Tokyo Tech

Development – climate -

- JRA-55 reanalysis will be completed in 2013.
 - JRA-55 is going to be continued in quasi-real time basis after 2013.
 - New climate values and new hindcast data will be produced.
- Upgrade of the seasonal forecast model probably in 2015
 - A JRA-55 based initial analysis field is used in the new seasonal forecast model.

Global mean Temperature Anomaly of Reanalyses (Time-Level Cross Section)

Anomaly: deviation from the mean value of the period 1980 – 1986 for each reanalysis

THANKS FOR YOUR ATTENTION