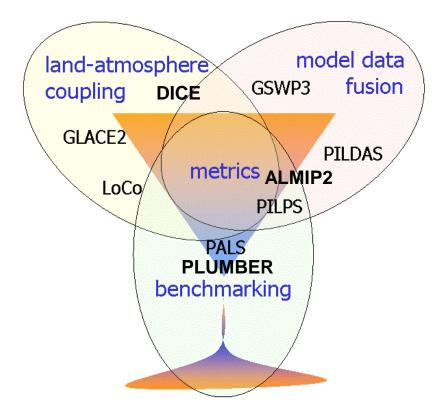


Global Land Atmosphere System Study (GLASS)

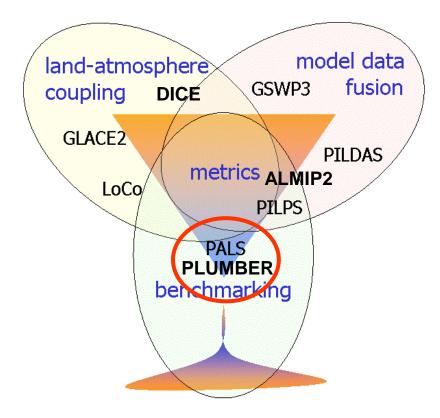
WGNE-28

Toulouse, 05-09 November 2012




This presentation covers the following areas

- Current structure and projects
- PALS & PLUMBER
- DICE
- PILDAS



The structure of GLASS

The structure of GLASS

Protocol for the Analysis of Land Surface models (PALS)

Most Visited 🗸 🛛 🎇 MetNet

🛅 Most Visited 🗸 🛛 🌌 MetNet

🛅 Most Visited 🗸 🛛 🌉 MetNet

0.05

0.04

0.03

0.02

0.01

0.00

0

Density

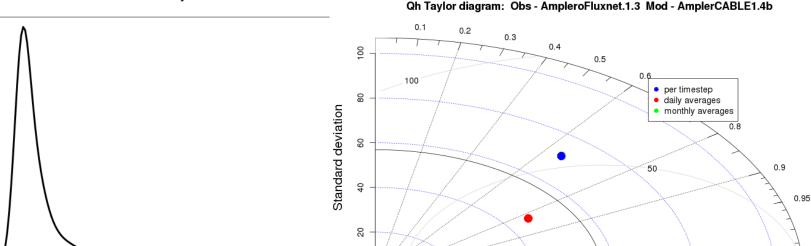
PALS: Protocol for the Analysis of Land Surface models

Currently showing all public data. Alternatively enter a PALS workspace.

50

Data Sets	Mod	leis		Mo	del Outputs		Analysis
🛯 Data Set 🛛 Matr	aFluxnet	\$	Version	1.4 🗘	Analysis Type	Pdf	\$

Data Sets	Models	Model Outputs	Analysis			
Data Set All Data Sets	Amodel CABLE.	1.4b 🗘 AmplerCABLE1	.4b 🗘 Variable	Qh 🗘	Analysis Type	Taylor


60

Sensible heat (W/m²)

80

0.99

100

20

40

+ 0 0

1!

Qle density: Obs - MatraFluxnet.1.4

www.pals.unsw.edu.au/pals/Welcome.action

100

Latent heat flux W/ m²

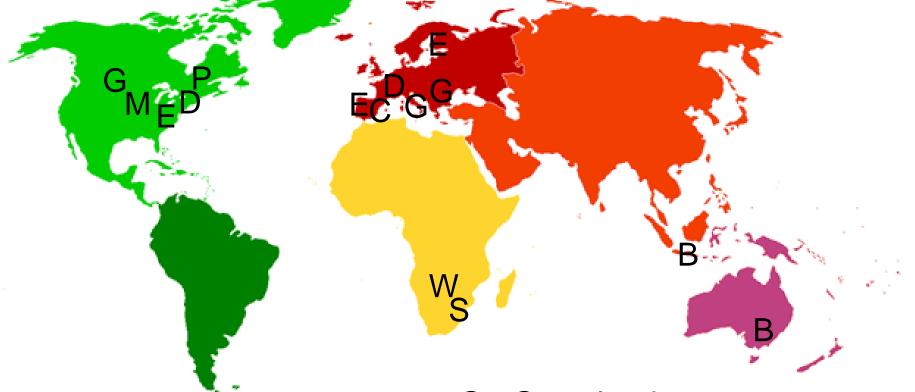
Flux tower site summary – all LaThuile free-fair-use

AmpleroFluxnet.1.3	Italy	Grassland	03-07	KrugerFluxnet.1.3	South Africa	Savanna	02-04
AudubonFluxnet.1.3	United States	Grassland	03-06	LoobosFluxnet.1.3	Netherlands	Evergreen needleleaf	97-07
BlodgettFluxnet.1.3	United States	Evergreen needleleaf	00-07	<u>MajadasFluxnet.1.3</u>	Spain	Savanna	04-07
BondvFluxnet.1.3	United States	Cropland	97-07	MatraFluxnet.1.3	Hungary	Grassland	06-07
BoreasFluxnet.1.3	Canada	Evergreen needleleaf	97-04	MerbleueFluxnet.1.3	Canada	Permanent wetland	99-06
BrookingFluxnet.1.3	United States	Grassland	05-07	<u>MitraEFluxnet.1.3</u>	Portugal	Evergreen broadleaf	05-06
BugacFluxnet.1.3	Hungary	Grassland	03-07	<u>MopaneFluxnet.1.3</u>	Botswana	Woody savanna	99-02
<u>CabauwFluxnet.1.3</u>	Netherlands	Grassland	03-07	PalangFluxnet.1.3	Indonesia	Evergreen broadleaf	02-04
CastelFluxnet.1.3	Italy	Evergreen broadleaf	01-07	<u>QuebeccFluxnet.1.3</u>	Canada	Evergreen needleleaf	02-07
DegeroFluxnet.1.3	Sweden	Permanent wetland	01-06	QuebecfFluxnet.1.3	Canada	Evergreen needleleaf	04-07
ElSaler2Fluxnet.1.3	Spain	Cropland	05-07	<u>Rocca1Fluxnet.1.3</u>	Italy	Deciduous broadleaf	02-07
ElSalerFluxnet.1.3	Spain	Evergreen needleleaf	99-07	Rocca2Fluxnet.1.3	Italy	Deciduous broadleaf	04-07
EspirraFluxnet.1.3	Portugal	Evergreen broadleaf	02-07	<u>SodanFluxnet.1.3</u>	Finland	Evergreen needleleaf	03-07
FortPeckFluxnet.1.3	United States	Grassland	00-07	<u>SylvaniaFluxnet.1.3</u>	United States	Mixed forest	02-06
GoodwinFluxnet.1.3	United States	Grassland	04-07	<u>TharandtFluxnet.1.3</u>	Germany	Evergreen needleleaf	98-06
HarvardFluxnet.1.3	United States	Deciduous broadleaf	94-02	<u>TonziFluxnet.1.3</u>	United States	Woody savanna	02-07
<u>HesseFluxnet.1.3</u>	France	Deciduous broadleaf	01-07	<u>TumbaFluxnet.1.3</u>	Australia	Evergreen broadleaf	02-06
HowardFluxnet.1.3	Australia	Woody savanna	02-06	UniMichFluxnet.1.3	United States	Deciduous broadleaf	99-04
HowlandmFluxnet.1.3	United States	Evergreen needleleaf	96-05	<u>VairaFluxnet.1.3</u>	United States	Grassland	01-07
HyytialaFluxnet.1.3	Finland	Evergreen needleleaf	01-05	WallabyFluxnet.1.3	Australia	Evergreen broadleaf	06-07
<u>KaamanenFluxnet.1.3</u>	Finland	Permanent wetland	04-06	WillowFluxnet.1.3	United States	Deciduous broadleaf	99-07

PALS Land sUrface Model Benchmarking Evaluation pRoject (PLUBMER)

• Aims:

o To introduce the concept of benchmarking to the community

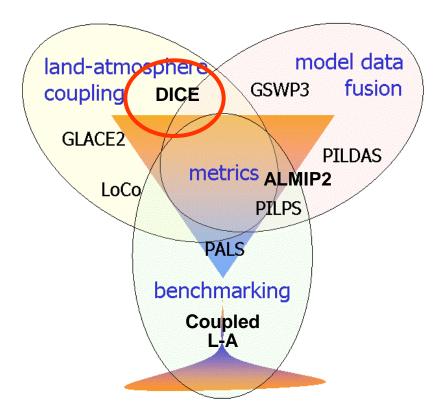

o Assess land surface models against a number of benchmarks:

- > (Multiple) linear regression (already available in PALS)
- FAO (Food and Agriculture Organisation) Penman-Monteith equation
- Manabe bucket model

o Identify development priorities for current land models

- Initial runs completed before end of 2012
- Results presented in hydrology session at AMS annual conference

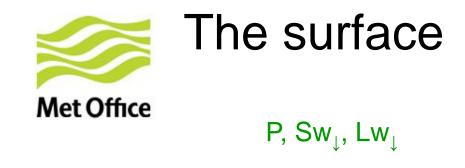
Sample of sites from PALS


E – Evergreen Needleleaf
B – Evergreen Broadleaf
D – Deciduous Broadleaf
M – Mixed Forest

- G Grassland
- C Cropland
- W Woody Savanna
- S Savanna
- P Permanent Wetlands

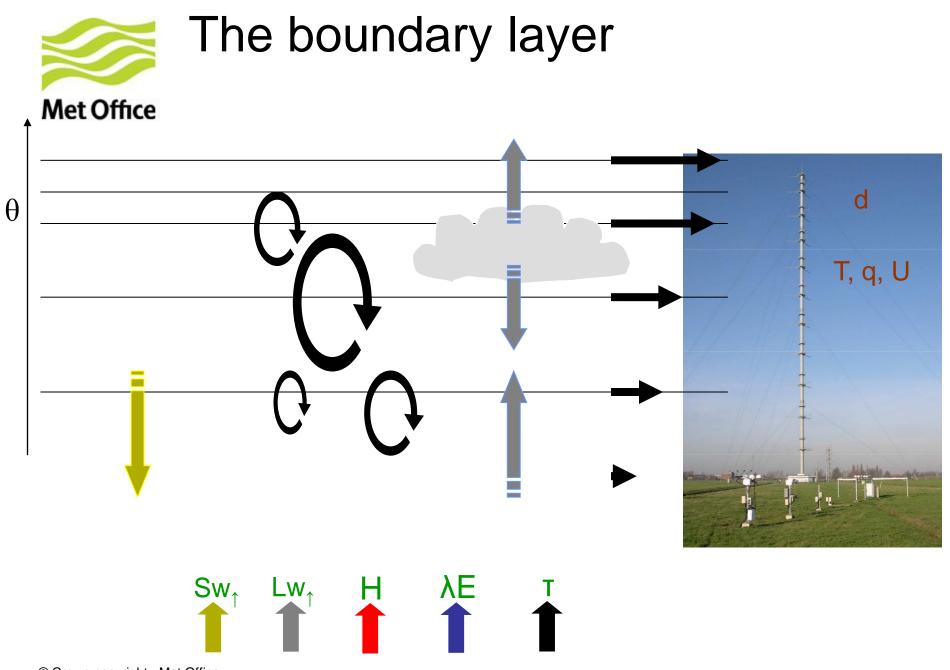
Land - Atmosphere coupling

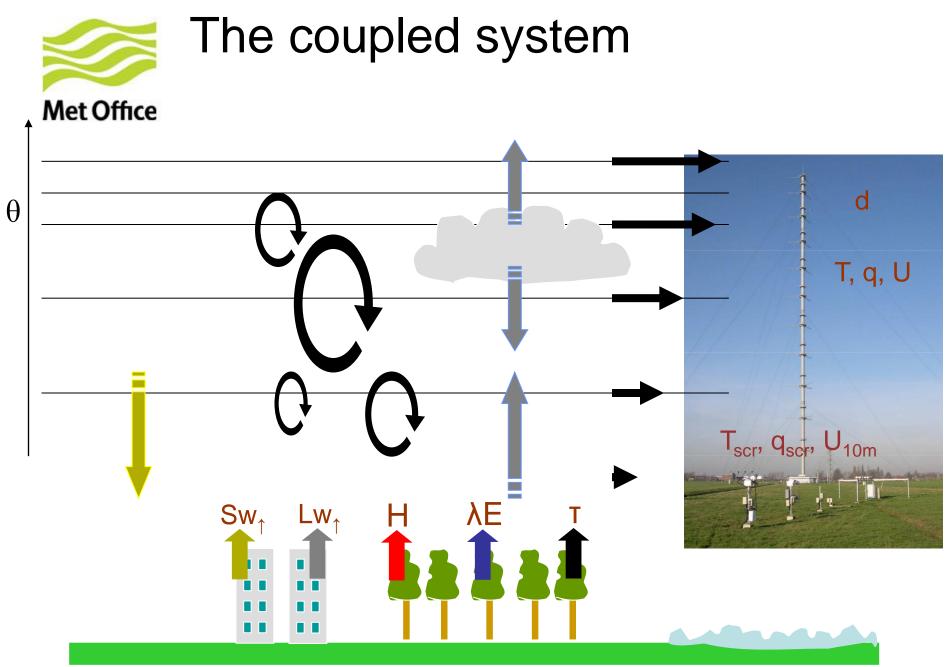
The structure of GLASS

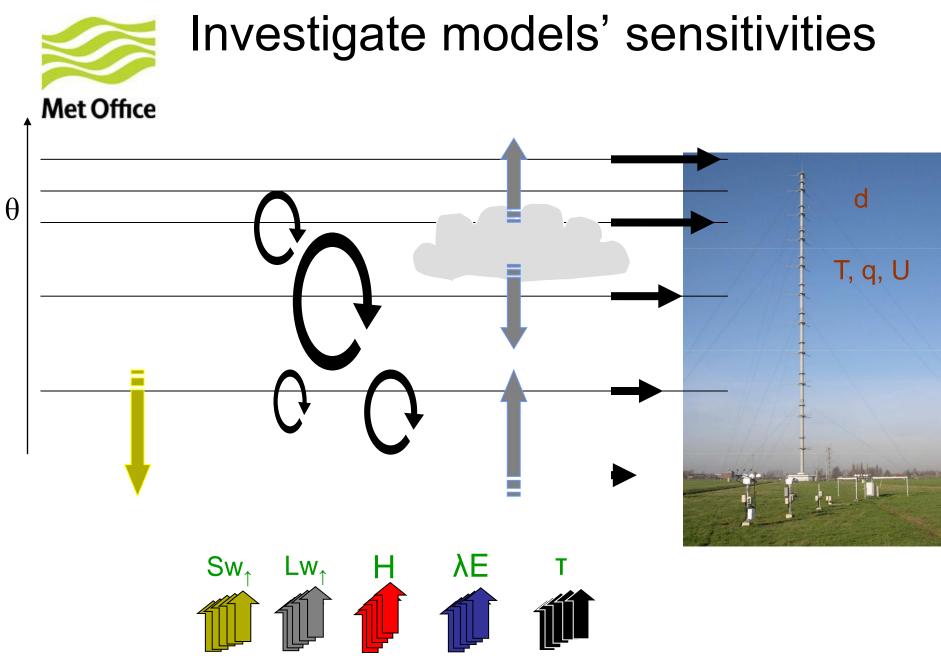

Dlurnal cycle Coupling Experiment (DICE)

Motivation:

- Understand land/atmosphere interactions
 Both real world and parameterization interactions
- Joint project between GLASS and GASS (GABLS part of GASS)
- Re-visit the CASES99 (GABLS 2) experiment Clear skies experiment
- Covers both stable BL and unstable BL


Unstable – GLASS area of interest


Stable – GABLS area of interest



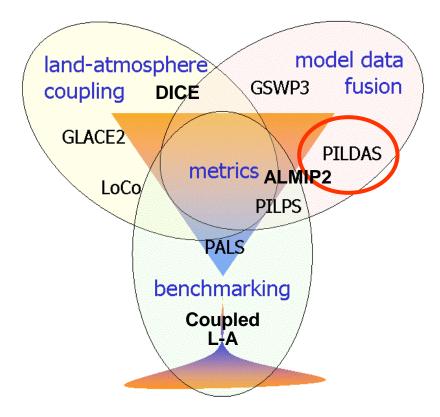
T, q, U

What next?

 GLASS + GABLS representatives to firm up on project design and plan

(Aim: end of 2012)

• Each modelling centre to undertake runs and complete initial analysis on their model


(Aim: early 2013)

• Workshop in fall of 2013

Model data fusion

The structure of GLASS

GEWEX/GLASS Panel Meeting, Boulder, 14 September 2012

Project for the Intercomparison of Land Data Assimilation Systems (PILDAS)

PILDAS-1 Update

Rolf Reichle* (NASA/GSFC) Jean-François Mahfouf (Météo-France), Qing Liu (NASA/GSFC), and Sujay Kumar (NASA/GSFC)

*Email: Rolf.Reichle@nasa.gov Phone: +1-301-614-5693

PILDAS objectives

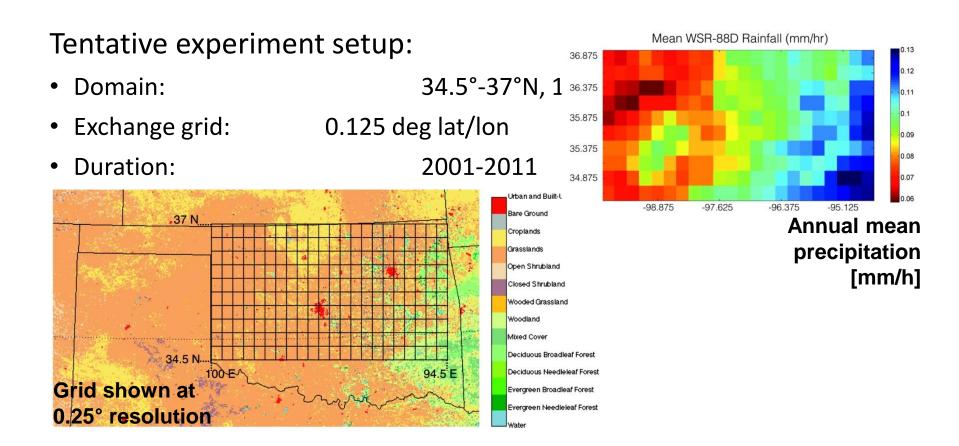
- Enable better **communication** among developers of land data assimilation systems (LDAS).
- Develop and test a framework for LDAS comparison and evaluation.
- Compare land assimilation methods.
- Conduct sensitivity studies of assimilation input parameters (such as model and observation errors).
- Provide guidance and priorities for future land assimilation research and applications.
- Ultimately, produce enhanced global data sets of land surface fields.

PILDAS-1 overview

The first experiment (PILDAS-1) will focus on

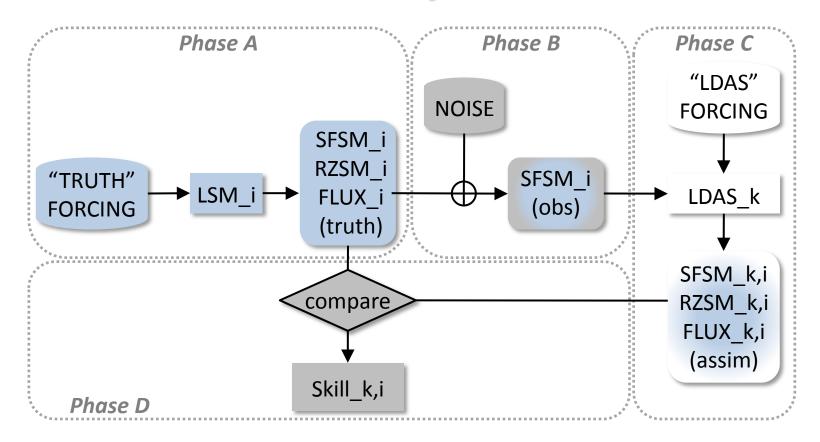
- systems targeted for weather and seasonal forecasting at operational centers and research institutions,
- soil moisture retrieval assimilation, and
- development of a framework for LDAS comparison.

PILDAS-1 will use


- various assimilation approaches (EnKF, EKF, ...),
- multiple "off-line" land models (not coupled to atmosphere), &
- synthetic observations.

Future experiments will assimilate satellite observations (SMOS, SMAP) and use coupled land-atmosphere modeling and assimilation systems.

PILDAS-1 experiment setup



Forcing data will be provided and LDAS output is expected on the exchange grid.
Participating systems may run on their native modeling/assimilation grids.
Participating systems use native model parameters (land cover, soil texture, vegetation...).

PILDAS-1 flowchart

Phase A: Generate truth for $i=1:N_{\tau}$ land models (participants).

- *Phase B*: Generate $i=1:N_{\tau}$ sets of synthetic observations (core).
- *Phase C*: Generate N_A open loop and $N_A \cdot N_T$ assim. runs (participants). *Phase D*: Analyze results (all).

PILDAS-1 Phase C

- Participants **should** assimilate all N_{τ} sets of synthetic observations at least once into their default LDAS.
- Participants **may** additionally use LDAS variants (different model, different assimilation method, different assimilation parameters,...).
- Participants choose assimilation algorithm and assimilation parameters.
- LDAS output **should** include assimilation diagnostics (O-F, increments, error parameters, ...).

Output of assimilation diagnostics is more complicated when participants choose to run the assimilation system on their native modeling/assimilation grid.

PILDAS-1 timeline

Through Jan 2013:

Disseminate revised experiment plan, obtain feedback from potential participants.

Finalize domain, exchange grid, forcing data sets.

Refine experiment plan.

Dry-run of entire experiment with just two institutions (GMAO, HSL) is in progress.

Mar 2013: Phase A – Truth integrations.

Dates are TENTATIVE!

- Jun 2013: Phase B Generation of synthetic observations.
- Aug 2013: Phase C Data assimilation experiments.
- Oct 2013: Phase D Analysis of experiments, draft publications.

PILDAS-1 confirmed participants interest

Institution	POC	Land model	DA method
ECMWF	P. de Rosnay, G. Balsamo	HTESSEL	EKF
Environment Canada	S. Belair, M. Carrera, B. Bilodeau	ISBA	EnKF
Ghent University	V. Pauwels, N. Verhoest	Toplats	(tbd)
Meteo-France	JF. Mahfouf	ISBA	EKF
Monash University	J. Walker	(tbd)	(tbd)
NASA/GMAO	R. Reichle, Q. Liu	Catchment	EnKF
NASA/Hydrological Sciences	S. Kumar,	LIS models (Noah,	EnKF
Lab	C. Peters-Lidard	Mosaic, CLM,	
		Catchment, VIC,	
		TESSEL <i>,</i>)	
NOAA/NCEP	M. Ek	Noah	EnKF
Norwegian Institute for Air	W. Lahoz, T. Svendby	ISBA	EKF,
Research (NILU)			EnKF
USDA/ARS Hydrology and	W. Crow	(tbd)	EnKF
Remote Sensing Lab			
CAREERI / Chinese Academy	X. Han	CLM4	EnKF
of Sciences			

VEX

- Would like to have WGNE members involvement in:
 - ✓ PLUMBER
 - ✓ DICE
 - ✓ PILDAS

Questions and answers