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Introc lon

e Assessing the performance of numerical weather prediction (NWP)
including ensemble prediction is of great importance in order to
understand the skill of the prediction, identify the deficiencies
and limitations, and further improve the NWP system (model
dynamics, physics, data assimilation, etc.).

e A conventional way to do so is analysis-based evaluations. In other
words, predictions are evaluated against their own analyses,
which are the outcomes of a data assimilation used in the NWP
system yielding the predictions.

 However, verifying against own analyses often creates a
problematic situation in the interpretation of the verification
results (Brown et al. 2012 WGNE Final Report).



Example

Park et al. (2008) demonstrate using TIGGE data set that the advantage of
verifying predictions against their own analyses can be large. Since NWP
models for predictions are also used in data assimilation schemes to provide
so-call first-guess fields, the analysis and forecast fields are in the same model
world (as opposed to the real world). If they have the same or similar
systematic error patterns, the advantage of the own analysis-based
verification could be rather large.

Another troublesome situation associated with the analysis-based verification
is when new observations are added to a data assimilation scheme. As new
observations can produce significant changes in analysis fields, especially in
data-sparse areas, relative to changes in forecast fields, the verification
results may look worse when the forecasts are verified against the analyses
with the new observations assimilated (Bouttier and Kelly 2001). Such a
questionable degradation of forecast performance can be seen more
distinctively at short range forecasts (Geer et al. 2010).
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Motivation of this stud

e Ensemble forecasts are usually verified against their own analyses
and the limited number of conventional data (e.g. radiosondes,

synop)

e Satellite observations are less used. In this study, ensemble
forecasts are verified against satellite observations using a newly
developed verification tool at ECMWF.

e Verifying ensemble forecasts against satellite observations will
provide additional views of understanding the forecast
performance.

e Moreover, it may lead to future possible developments and/or
amendments of the ensemble forecasting system.




What we have done 1/2

1. We have developed a new verification tool called “forecast
obstat”, in which (deterministic) forecasts are verified against
observations including a various types of satellite observations.

| Schematic of the Forecast Obstat (example of verifying 5-day forecast) |
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What we have done 2/2

2. We modified the forecast obstat so that it could handle with
ensemble forecasts (hereafter referred to as ensemble forecast
obstat: EFO).

3. We modified the EFO so that both the parent and child
experiments can be run with and without stochastic physics

scheme (SPPT + SKEB).

4. Then we have conducted a set of experiments (next slide).



Ensemble Forecast Obstat Experiments
Initial time: 2012070100 - 2012091500 with a 4 day interval
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Ensemble Spread-Error Relationshi

Ensemble spread-error relationship is verified. The ensemble spread and
ensemble mean error is calculated in grid-point space with a horizontal
resolution of 0.25 x 0.25 degrees (roughly equivalent to TL639).

When the number of observations in a When the number of observations in a

grid box is one, the ensemble spread and | grid box is two or more, the ensemble

ensemble mean error at the observation spread and ensemble mean error at each

point represent the value of the grid point. | observation point are first calculated.
Then a simple average of them represents
the value of the grid point.

0.25 deg.
0.25 deg.

0.25 deg. 0.25 deg.



Ensemble Spread-Error Relationship -2-

For reliable ensemble,
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Results and conclusion

The over-dispersive relationship seen in the verification against analysis
is not seen in the verification against both radiosonde and AMSU-A
observations at the short range forecasts.

In the 5-day verifications, the relationship looks similar between analysis-
and observation-based verifications.

Similar spread/error relationship is seen in the analysis-based verification
even when the verified grid boxes are limited where the AMSU-A
observations exist (not shown).

Conclusion
*Observation-based evaluations provide different views of the
spread/error relationship from those of the analysis-based
evaluations.
eAnaysis-based verification only may lead to wrong decision-
making in the future improvement of the ensemble system.




