

Implementations 2014-2017

	2013	2014	2015	2016-7
Model components: -Atmosphere -Composition -Land surface -Waves -Ocean -Model error	Convection, clouds, PBL Wave effects on upper ocean ENS ocean coupling day-0 Land surface perturbations	Stratospheric noise filter MACC climatologies New orography, FLAKE SKEB w/o GWD	New PBL, mass conservation Interactive ozone Multi-layer snow Surface currents - waves Sea-ice in ENS Revised SPPT	Interactive aerosols Hires land-surface Unstructured grid Ocean in HRES
Data assimilation: -EDA -4D-Var -Surface -Coupling -Data	Covariances, unbalanced CV B L137, radiance q/c Snow analysis	Balance stratosphere, R LAI/snow in SEKF ASCAT, MSG-4, SMOS, MT	Cloud CV, weak constraint 4DVAR Albedo in SEKF Coupled reanalysis, sea-ice analysis Sentinel-3/5p, Aeolus	Weakly coupled 4DVAR EarthCARE
System configuration: -Resolution -Ensembles -DA window	HRES/4DVAR/EDA L137 ENS L91, EDA M25	EDA T511, 4DVAR T399 ENS reforecasts M15	HRES T2047, ENS T1023, 1/4º ocean 4DVAR 24h	EDA M50, System-5 4DVAR 36/48h?
Scalability: -Technical -Model -Data assimilation -Data processing	3DVAR in OOPS COPE prototype	Overlapped comms. Lagged radiation COPE operational	Multiple model grids 4DVAR in OOPS	Unstructured sub-meshes New eqs., transport, solver
Services: -MACC -ERA/ORA -OpenIFS	ERA-Clim end Phase-1 end	MACC-II end ERA-CLIM2/SAT start Phase-2 start	MACC-III end/ Copernicus-AS start ERA-I end	ERA-CLIM2 end Phase-2 end

Cycles 38r2, 40r1

Cycle 38R2: Mean impact

L137-L91, day-5 forecasts 1-15 January 2012

SPECIFIC HUMIDITY frii(120)-frg8(120) 20120101-20120115

CLOUD LIQUID WATER frii(120)-frg8(120) 20120101-20120115

GEOPOTENTIAL frii(120)-frg8(120) 20120101-20120115

CLOUD FRACTION frii(120)-frg8(120) 20120101-20120115

CLOUD ICE WATER frii(120)-frg8(120) 20120101-20120115

ECMWF WGNE-29 March 2014

3

Cycle 38R2: Mean impact

Temperature tendencies difference (K/day), day-5 accumulations (T159, 1-15 January 2012)

DT RADIATION fran(120)-fram(120) 20120101-20120115

DT DYNAMICS fran(120)-fram(120) 20120101-20120115

DT VERTDIFF fran(120)-fram(120) 20120101-20120115

DT CLOUD fran(120)-fram(120) 20120101-20120115

Cycle 38R2: Mean impact

38R2 (L137) – 38R1 (L91) day-1 forecast RMSE June-August 2012

Cycle 40R1: Diurnal cycle convection

Meso-NH (2.5 km)

Colours: total heating - radiation Contours: adiabatic (dynamical) tendencies= response to convective heating

Cycle 40R1: Diurnal cycle convection

Radar verification for JJA 2011

Cycle 40R1: Diurnal cycle convection

Changes implemented in 40R1 building on Sandu et al, 2013

Increase in drag over orography Increase in atm/surf coupling

Consequence: net reduction in diffusion in stable boundary layers, not much change in free-shear layers, except at 850 hPa

Cycle 40R1: Vertical diffusion and GWD

40r1 vs 38r2: RD e-suite verification with SYNOP

Cabauv 200 200 OBS EXP Mean error RMSE DIFF 150 150 height (m) height (m) 100 100 2-m temperature (C), 00 UTC (+60h): 38r2 0.26 2.06 50 50 40r1 0.27 2.09 0 0 10 0.0 1.0 2.0 3.0 4.0 5.0 wind speed (m/s) rmse wind speed (m/s) Hamburg 300 300 12 UTC (+72h): OBS CTL 250 250 DIFF 38r2 -0.34 2.67 200 200 height (m) height (m) 40r1 -0.19 2.61 150 150 100 100 2-m dew-point temperature (C), 00UTC (+60h) 50 50 38r2 -0.30 2.26 0 0 0 10 0.0 1.0 2.0 3.0 4.0 5.0 5 wind speed (m/s) rmse wind speed (m/s) 40r1 -0.18 2.23 Falkenberg 300 300 OBS CTL DIFF 250 250 12UTC (+72h): 200 200 height (m) height (m) 150 150 38r2 -0.41 3.01 100 100 40r1 -0.41 3.01 50 50 Ō o 0 5 10 0.0 1.0 2.0 3.0 4.0 5.0

wind speed (m/s)

EXAMPLE 1 WGNE-29 March 2014

Period: 15/06-31/07/2013

11

JJA 2012 24-hour forecasts

© ECMWF

rmse wind speed (m/s)

Cycle 40R1: Tendency coupling of ENS with NEMO from initial time

Hurricane Nadine – 19/09/2012 SST day 5 – day 0

MJO bivariate correlation

Tendency coupling No coupling

WGNE-29 March 2014

ECMWF

Cycle 40R1: Land surface perturbations in EDA

ENS spread soil moisture top layer (t=48h)

WGNE-29

Cycle 40R1: Land surface perturbations in EDA

Grid point in South Dakota (44.1° N, 98.9° W), initialised on 2013-01-15, 00 UTC

Cycle 40R1: ENS forecast skill, z500 NET

ECMWF WGNE-29 March 2014

Cycle 40R1: EDA error covariances

Cycle 40R1: Radiance spread from the EDA

Example: AMSU-A channel 8 (upper tropospheric temperature channel)

Model cycle 40r1

40r1 vs 38r2: June 2012-June 2013, vs own analyses

Experiments: T_L7999 (2.5 km) for Lothar (+11h)

Experiments: T_L3999 (5 km) wave fc (+72h) for Sandy

Wave height for 00 UTC on 30 October 2012 coupled to a 0.5° to 0.1° (for T3999) global wave model.

Experiments: Extension of reforecast ensemble size from 5 to 15 members

