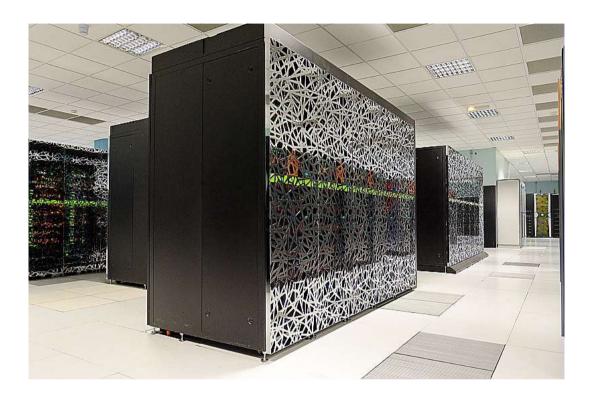

Météo-France report

François Bouyssel Météo-France/CNRM

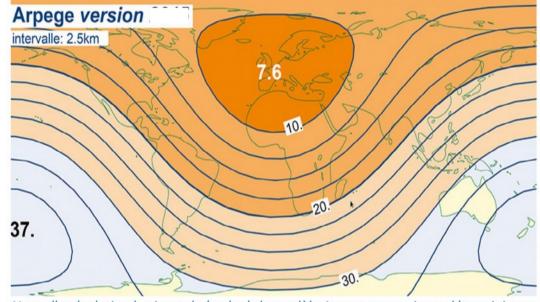
Pan-WCRP Modelling Groups Meeting, UK Met Office, Exeter, United Kingdom, 9-13 October 2017


Evolution of HPC at Météo-France

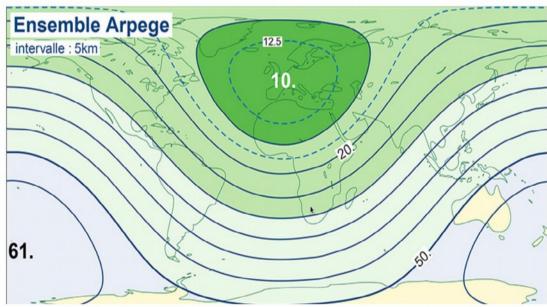
1 gigaFLOPS = 10⁹ opérations en virgule flottante par seconde 1 téraFLOPS = 10¹² opérations en virgule flottante par seconde 1 pétaFLOPS = 10¹⁵ opérations en virgule flottante par seconde

Super-computers at Météo-France

Initial configuration (**2013**) 2 x 1000 nodes 1 node = 24 CPUs Intel « Ivy Bridge » 50 000 cores / 1 Pflops

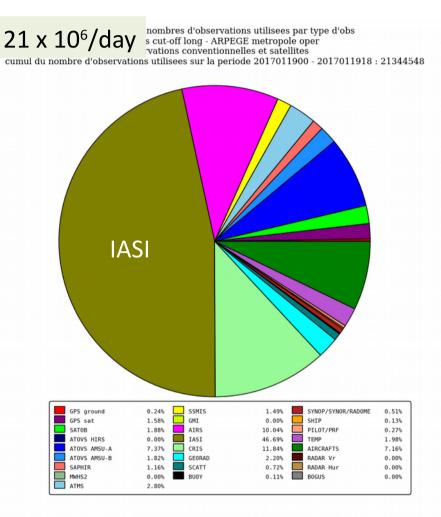

Recent upgrade (2016): 2 x 1800 nodes 1 node = 40 CPUs Intel « Broadwell IP » 150 000 cores / 5 Pflops

2 x BULL B710 DLC 1 cluster for operations (ECA) 1 cluster for research (CNC)



Global NWP systems based on ARPEGE

		Arpe
Systems	Characteristics	interval
ARPEGE Deterministic	TI1198c2.2 L105 (7.5km on W Europe) 4DVar (6h cycle): TI149c1L105 & TI399c1L105 5 forecasts per day up to 114h	37.
AEARP <i>(EDA)</i>	Tl479c1 L105 ; 25 members 4D-Var (6h cycle): Tl149c1 L105 Background covariances averaged on 1.5 days and updated every 6h	Nouve interva
PEARP <i>(EPS)</i>	TI798c2.4 L90 (10km on W Europe) 35 members ; twice a day up to 108h Using 17 EDA members and singular vectors New set of 10 physical packages (with new convection scheme "PCMT")	61.



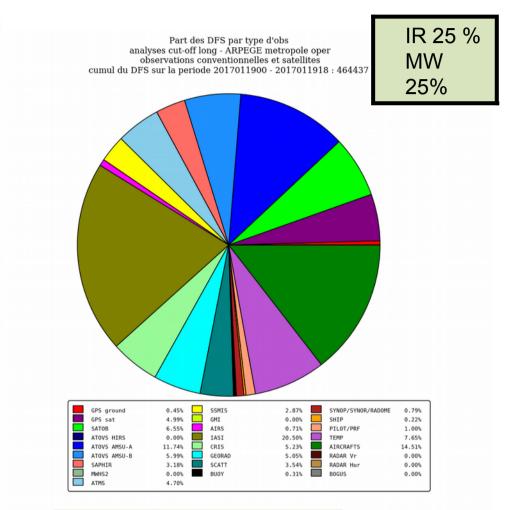
Nouvelle résolution horizontale (en km) du modèle Arpege en version « déterministe »

Nouvelle résolution horizontale (en km) du modèle Arpege ensemble

Observations in ARPEGE

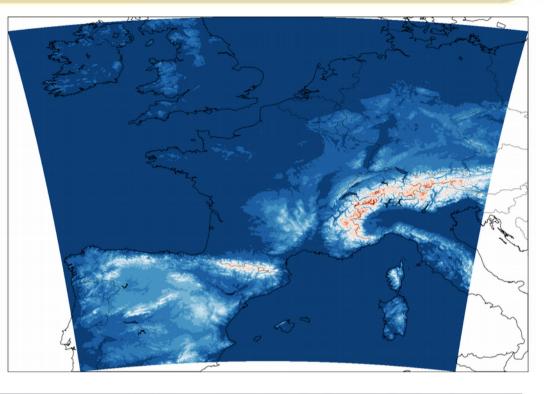
Satellite observations (90 %) -> Infra-red radiances (70 %) -IASI (METOP-A + B) -CrIS (Suomi-NPP) / AIRS (Aqua) -CSR from GEO satellites -> Microwave radiances -AMSU-A (NOAA/Aqua/METOP) -MHS/AMSU-B (NOAA/METOP) -ATMS (Suomi-NPP) -SSMI/S (DMSP F17/F18) -SAPHIR (Megha-Tropiques) -> GNSS-RO + Ground-based -> AMVs + Scatterometer winds **Conventional observations (10 %)** -> Aircrafts, surface, RAOB

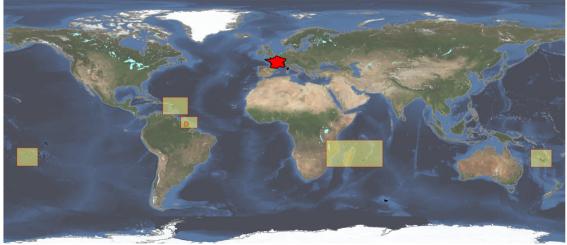
Fraction of observation types


Spatial thinning of satellite obs between 250 and 125 km

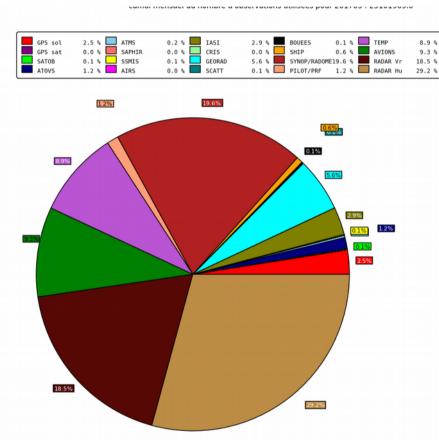
Observations in ARPEGE

Fraction of observation types (conv = 10 %)




DFS: information content (conv = 25%)

Regional NWP systems based on AROME


Systems	Characteristics
AROME Deterministic	1.3km (1536 x 1440 pts) L90: from 5m to 10hPa 3DVar (1h cycle) 5 forecasts per day up to 42h
AROME Nowcasting	1.3km (1536 x 1440 pts) L90: from 5m to 10hPa 3DVar (no cycling – 10' cut-off) 24 forecasts per day up to 6h
AROME-EPS	2.5km L90 12 members Twice per day up to 45h Initial and boundary conditions from PEARP
AROME Overseas (5 domains)	2.5km L90 – Dynamical adaptation of IFS (altitude) and Arpege (surface) 4 forecasts per day up to 42h

Observations in AROME 3D-Var

Satellite observations = 10 %

- Radar DOW + Z (RH)
- Surface (SYNOP + RADOME)
- Radiosoundings (BUFR HR)
- Aircrafts
- **GEO radiances (METEOSAT)** with *T_s* inversion (5 channels)
- LEO satellites (IASI, AMSU, AMVs, SCAT)
- Ground based GNSS (ZTD)

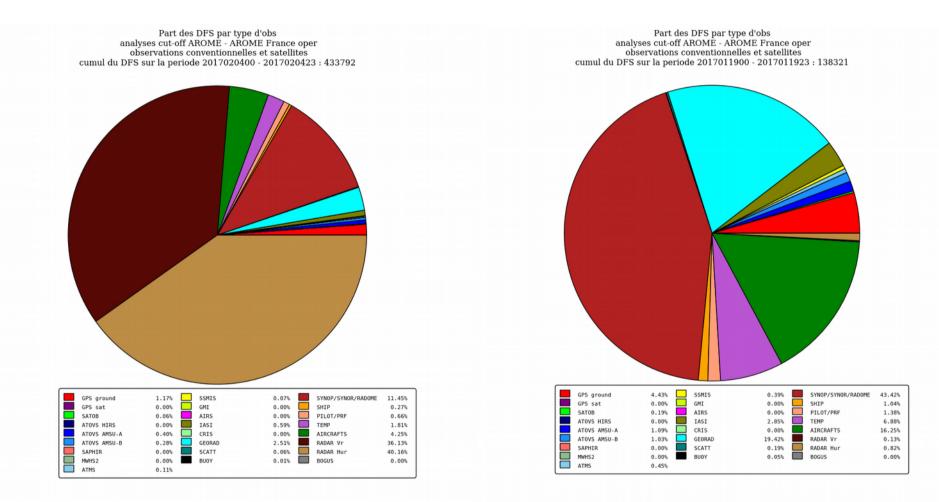
Spatial thinning of satellite obs between 80 and 125 km

DirOP/COMPAS 02-avril-2017

Data availability for AROME-NWC : radar, surface, IASI, AMSU-A/MHS radiances (from Lannion) and ASCAT winds (from EARS)

Satellite observations in AROME 3D-Var

analyses AROME France - observations satellites 6000000 5000000 mensuel du nombre d'observations 4000000 3000000 2000000 Cumul 1000000 0 févr. août févr. août févr. août févr. août août févr. août août févr. févr. févr. févr. 2009 2011 2012 2013 2014 2015 2016 2017 Mois SATOB ATMS SSMIS GEORAD SCATT GPS sol IASI SAPHIR AIRS ATOVS CRIS GPS sat


Evolution des cumuls mensuels de nombre d'observations utilisées par type d'observation

DirOP/COMPAS 02-avril-2017

3D-Var with hourly cycling + Model top at 10 hPa

Information content of observations

Rainy period

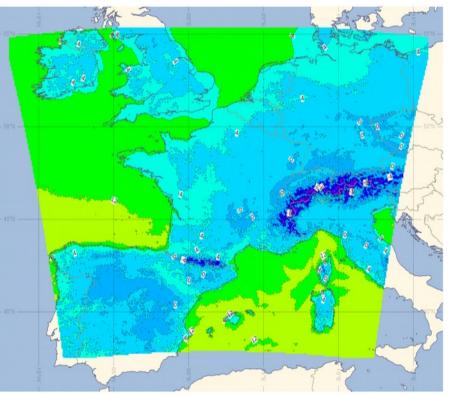
Dry period

AROME-France-EPS operations ('PEArome' in French)

in operational production since Oct 2016

2017 operational setup :

- model : AROME-France, dx=2.5km (dx=1.3km in AROME-F déterministic) grid=750x800, 90 levels
- base : 9/21utc (coupling is 3h older)
- production : 12 members up to 45h range


Perturbations :

- lateral boundaries: clustered global PEARP ensemble
- **initial**: global PEARP ensemble + centering on 3DVar analysis of AROME-France (dx=1.3km)
- surface: initial & constant perturbations
- model: stochastic perturbations of physics tendencies (SPPT)

Plans (2018):

- 6-hourly productions
- ensemble data analysis (EDA) initial perturbations
- (later : increase ensemble size & resolution)

AROME-France-EPS domain

"Recent" evolutions of operational suite

December 2015 : Operational switch on 41T1_op1 : latest scientific evolution of NWP operational systems ARPEGE, ARPEGE-EPS, AROME, etc.

2016 : new operational NWP systems :

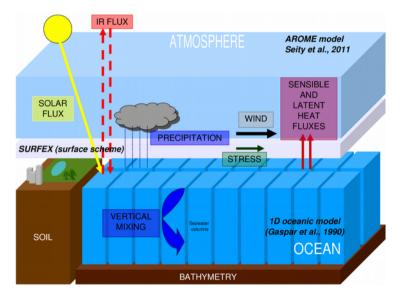
- AROME-NWC: a nowcasting regional system over France with hourly analysis with 10' cut-off plus 6h short-range forecast with the same 1.3 km configuration than AROME-France,

- AROME-OM: five regional systems over overseas territorial collectivities with AROME configurations at 2.5 km running four times par day up to 48h range.

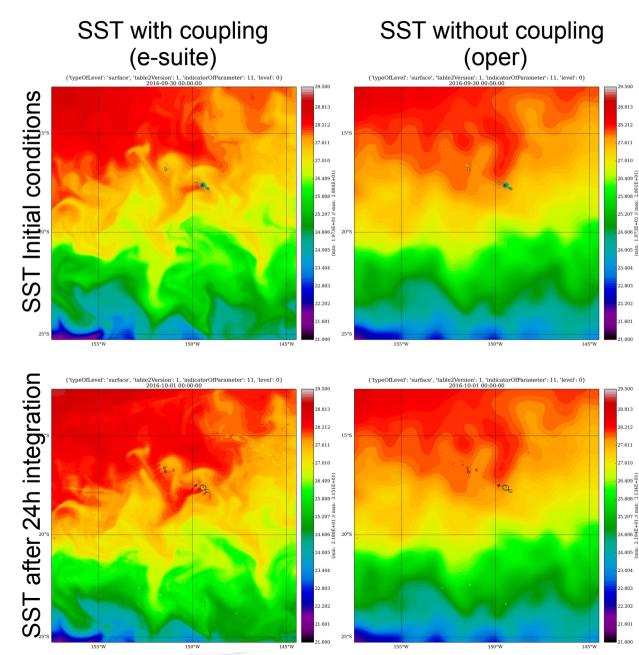
- AROME-EPS: a regional ensemble prediction system over France. The configuration is based on 12 perturbed forecasts of the AROME-France model with a 2,5km horizontal resolution and 90 vertical levels, coupled with the ARPEGE ensemble prediction system. The AROME-EPS system runs twice a day, at 09 and 21 UTC, to provide forecasts up to a 45h range.

June 2016 : upgrade of the BULL HPC (phase 2)

December 2017: Operational switch on 42_op2 : latest scientific evolution of NWP operational systems ARPEGE, ARPEGE-EPS, AROME, etc.


СУ42_ор2

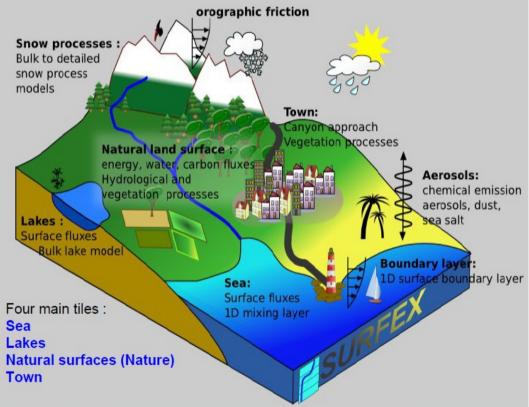
- Description for ARPEGE / AEARP (EDA) / PEARP (EPS)
- SURFEX model (surface parameterizations)
- > AEARP: resolution increase for the computation of background error variances
- > AEARP: normalisation of variances induced by wavelet modelling of correlations
- Revised "white list", "sigmaO", "quality check" on ground GPS observations
- > 2 water vapour channels (183GHz) of GMI onboard GPM-Core
- > 3 water vapour channels (183GHz) of MWHS-2 onboard FY3-C
- Higher density of GEORAD (from 250 to 125km) + using Meteosat-8 (CSR+AMV)
- Assimilation of window SEVIRI channels (4, 6, 7, 8 over sea)
- Higher spatial horizontal sampling (from 125 to 100km) and 5 new channels (ozone) for IASI
- New physics in PEARP (ARPEGE EPS)
- Optimisations (new compiler version, etc.)
- New diagnostics (domain, variables, etc.)


> Description for AROME

- Same modifications as in ARPEGE for observations
- New version of Incremental Analysis Update
- > New cloud optical properties
- > New autoconversion threshold for transformation of cloud droplets into rain
- > Ocean mixing layer scheme in AROME-Overseas
- Optimisations (new compiler version, server for production of AROME-EPS coupling files)
- New diagnostics (domain, variables, etc.)

Ocean mixed layer 1D model in Arome Overseas

 Daily initial conditions from Mercator PSY4 operational ocean model


Physical packages

	Targeted physics for hydrostatic scales (ARPEGE NWP and Climat)	Operational physics of convective scale model (AROME NWP and Climat)	
Surface	SURFEX (Masson et al., 13): surface modelling platform		
Radiation	RRTM (Mlawer, 97) + SW6* (Fouquart 80, Morcrette 01)		
Turbulence	1.5 order scheme prognostic TKE (Cuxart et al., 00)		
Mixing length	Non local, buoyancy based (Bougeault-Lacarrère, 89)		
PBL thermals	New scheme PCMT (5 prog. var) (Piriou et al., 07) and (Gueremy, 11)	PMMC09 (Pergaud et al., 09)	
Clouds	PDF based: (Smith, 90) or (Bougeault, 82)		
Microphysics	Bulk scheme with 4 prog. var. (Lopez, 02)	Bulk scheme** 5 prog. var. (Pinty and Jabouille, 98)	
Convection	Bougeault (1985),	×	
Subgrid orographic effects (GWD, blocking, etc.)	Catry-Geleyn (08)	×	

Surface

"SURFEX", an "externalized" surface model, is progressively used.

Same physiography and surface schemes are currently used all systems : ECOCLIMAP database, ISBA soil/vegetation/ hydrology, D95 snow scheme, ECUME sea surface fluxes, except Town Energy Model used only in convective scale model

New surface parameterizations developed simultaneously for LAM and global NWP and Climat systems : Explicit soil diffusion scheme (ISBA-DIF), Explicit snow scheme (ISBA-ES), Multi-Energy balance (MEB), Carbon options (ISBA-A-gs)

(Masson et al., 2013)

LIMA: Liquid Ice Multiple Aerosols

2-moment, mixed-phase microphysical scheme

- Derived from ICE3, with improved representation of some processes
 - Explicit deposition of water vapour on ice crystals
 - Improved pristine ice \rightarrow snow conversion
- Vié et al., 2016: LIMA (v1.0): a two-moment microphysical scheme driven by a multimodal population of cloud condensation and ice freezing nuclei, GMD, doi:10.5194/gmd-9-567-2016.

Short term plans

Next E-suite : CY43T2 (?)

Scheduled from beginning 2018 to autumn 2018

Migration to VORTEX (Python toolbox) for ARPEGE 4DVar, EDA and AROME 3DVar Migration to GRIB2 format

New horizontal resolutions for global systems (deterministic, EDA, EPS)

- ARPEGE: ~5km over France (T_1 1798c2.2L105), 2 minimisations in T_1 224c1L105

and T₁499c1L105

- EPS: 35 members (unchanged) at ~7.5 over France (~ T_1 1198c2.2L90) and four times per day

- EDA: 50 members in T₁499c1L105
- AROME-EPS and ARPEGE-EPS: 4 times per day
- > Implementation of new system AROME-EDA
- Many uncertainties for the next HPC