

The NCEP Production Suite

Science presentation Strategic

Hendrik L. Tolman
Director, Environmental Modeling Center
NOAA / NWS / NCEP

Hendrik.Tolman@NOAA.gov

Driving forces

UCACN report and NCEP Strategic plan

- EMC modeling directions:
 - > Toward unified modeling:
 - Simplify Production Suite (up to 30 major systems).
 - > But also add more:
 - → New elements in the environmental modeling suite.
 - Reforecast for postprocessing of model results.
 - > Be more nimble, faster model improvements.
 - > But changes require much work on post-processing side, so change less often

Tolman, March 24, 2015 WGNE, EMC strategic, 2/22

Do less

Simplify NPS, unified modeling

- First deal with global and regional separately.
 - > To disruptive for operations to unify all at once.
- Unified modeling approach promoted by UCAN.
 - NOAA Environmental Modeling System (NEMS, ESMF).
 - From GFS / GEFS / CFS models to coupled model with GFS / GEFS / CFS applications.
 - > Reduce number of mesoscale models
 - → RSM, ETA, NMM, HWRF, GFDL, NMM-B, WRF-ARW.
 - Global meso unification ?
 - Keep in mind in planning phases.
 - Actual unification later.

Do more

Emerging Requirements

- Weather Ready Nation.
 - > Products.
 - > Social science.
- High impact events.
- Weather to climate—seamless suite of guidance and products.
 - > Week 3-4.
 - Systematic reforecast need.
- Range of products beyond weather:
 - Atmosphere, land, ice, ocean, waves, aerosols, (ecosystems).
 - Individual products versus coupled modeling.
 - > Water cycle, NWC.

Change faster

Guiding factors:

- Community modeling
 - > Concepts proven with HWRF, WW3, CRTM,
 - > Communicate operational business model to academia.
 - Town hall meetings at AGU and AMS.
- New opportunities
 - Sandy Supplemental, R2O funding (NGGPS).
 - Has to be integrated R&O approach, not building of new stovepipes.
- Modeling strategy:
 - We need a well articulated and documented strategy.
 - Now only bits and pieces in place.
 - → Following slides 10-12 ...

Change slower

Changing slower versus developer- user engagement in implementation process.

- Use HWRF paradigm for more implementations.
 - > To be discussed later today.
- Increased MDL, NCEP Centers, (OHD, NWC) involvement in implementation process.
 - Operationally sustainable "downstream" processing.
 - Articulate needs for retrospective data (including reanalysis and reforecasts).
 - Clear expectation on time lines for implementations.
 - Business cases for
 - → Up front available retrospective data.
 - → Real-time available retrospective data.
 - → Sunsetting of old model versions.

Forcing Factors

Science and Technology Advances

- Observing systems
- High performance computing
- Data dissemination
- Numerical Guidance Systems
 - Data assimilation (methodology)
 - Modeling (physics, coupling & dynamics)
 - > Ensembles (constr.—initialization, membership, etc.)
 - Intelligent post processing
- Predictability
 - convective systems
 - Seasonal to interannual

The NOAA Modeling Strategy...

High Level Perspective

- Moving away from the "model of the day".
- Priorities for deterministic development are clear:
 - Data assimilation (methodology and observations).
 - Model physics
 - Why do we continue to underplay this important part of the enterprise?
 - Clouds, microphysics, radiation, land, ocean, waves, ice, aerosols....includes coupling.
 - Resolution—horizontal and vertical.
 - Dynamic core.
 - > Must consider advanced HPC technologies.
 - Regional systems shift to convection permitting applications.

The NOAA Modeling Strategy...

- Focus on probabilistic modeling (ensembles).
 - Continue to pursue multi-model approach to ensembles.
 - Limited within NCEP.
 - → National or international approach.
 - Don't forget: ensemble systems only as good as the modeling system it is built from.
 - Presentation / use of probabilistic information.
 - > Push to products for week 3-4.
- Unified modeling approach promoted by UCAN.

NOAA Chief Scientist (Dr. Rick Spinrad) tasked to develop NOAA wide modeling strategy (R2O).

UCACN Model Advisory Board

- Review production suite
 - Strategic level.
 - > Team from academia.
 - Stakeholders (including contributors) to be heard, but not on the panel itself.
- Global unification?
 - > Folowing slides on global are tentative
- High Resolution Rapid Refresh and ensembles.
- Everything in between

Essential point of reference for NCEP

NGGPS

NWS R2O and NGGPS funding.

- For first time NWS is funding agency.
 - > Fund gaps in operations.
 - Project based funding for strategic development.
 - Within US government.
 - → Academia, with NWS partners / champions.
 - Test beds for R2O
- Key element: Next Generation Global Prediction System.
 - Next generation Dycore Selection.
 - Unified physics interface, focus on physics.
 - Model Coupling
 - Climate Forecast System
 - Arctic modeling.

NGGPS dycore

NGGPS dy-core project

- Selecting a new dynamic core for global model to serve the NWS for the coming decades.
 - Architecture suitable for future compute environments.
 - Non-hydrostatic to allow for future convection-resolving global models.
- 18 month process to down-select candidate cores.
- 5 year plan to replace operations.
- Core → NEMS → applications.

NGGPS dycore

Starting from existing cores:

- > GFS-NH: "baseline"
- > FV-3 (GFDL, cubed sphere, finite volume)
- MPAS (NCAR, unstructured c-grid)
- NIM (ESRL, icosahedral)
- NEPTUNE (Navy, DG+)
- NMM-B UJ (cubed sphere)

NGGPS and NEMS / ESMF

Modular modeling, using ESMF to modularize elements in fully coupled unified global model

NGGPS physics

NUOPC Physics Driver Schematic

NGGPS / Arctic / YOPP

Key elements for ice modeling / predictability:

- Coupled problem ocean-ice-atmosphere.
 - > See Canadian experience for Gulf of St. Lawrence.
- Need to control flux biases in coupled system.
 - > 10 W/m2 bias grows/thaws 1m ice per year!
- Ensemble should improve predictability, as random flux errors are averaged out.
- Metrics need to be developed to make validation relevant to real-world users.

Tentative NGGPS funding for two year project.

- EMC to build model with above features (regional → global).
- Partnering with GFDL (ice models, validation).

Unified Global Model

Prototype model plan

Months	Activities		
1-2	Set up NMMB, HYCOM,	archive based	
3-4	static ice "solo" in NEMS.	flux biases	Ice in ESMF
5-6	Build and validate deterministic coupled system with flux bias correction for 5-7 day forecast	Validation metrics	
7-8			KISS v2
9-10			
11-12			
13-14	Setup ensemble system		
15-16			
17-18	Test, validate and calibrate ensemble system		
19-20			
21-22			
23-24	Coupled demonstration system, (→ day 10+?)		

Tolman, March 24, 2015 WGNE, EMC strategic, 18/22

History

- EMC Model Evaluation Group (MEG) started in spring 2012
- Inspired by similar efforts at ECMWF
- Comprehensive real-time evaluation of models.
- Started with part-time contributions of Manikin and White.
 - > Added Corey Guastini mid 2014.
- Focus
 - > NAM, SREF, RAP, HRRR, HIRESW, HWRF
 - > GFS, ECMWF, GEFS, +
 - Mostly CONUS

Identified model issues

- GFS cold/wet biases
- SREF initialization
- Ice / snow cover issues in various models.

Post-mortems

Sandy, Derecho, Recent east coast storms

Better communications with centers and the field.

Expand MEG

- Alaska
- Marine models
- NARRE, HRRRE

Increase staffing

- 5-7 FTE, including focus on physics validation and verification.
- Skill set: modelers versus forecasters.

Many ideas floated ...

Tolman, March 24, 2015 WGNE, EMC strategic, 22/22