

WGNE report: recent developments in physical parametrizations

François Bouyssel & Ayrton Zadra with contributions from WGNE members (thanks!) Reports related to changes or improvements to a given **process** or **parametrization**

Reports related to "infra-structure" issues

* Based on contributions from NCAR, CMA, CMC, DWD, ECMWF, JMA, MeteoFrance, NRL, UKMO

Plans for **CAM** physics

Blocking, low-level turning

(follows Scinocca&McFarlane 2000)

- MG2: Updated microphysics w/ prognostic rain and snow [will go into CMIP6 version of CAM]
- Anisotropic Orographic drag + mesoscale blocking

[may go into model after CMIP6]

 Vertical resolution increases may be considered after CMIP6

Black lines show ridges identified by analysis algorithm

CLUBB Cloud Layers Unified By Binormals

UNICON Unified Convection Scheme

- High order closures (1 third order, 8 second order)
- Unifies moist and dry turbulence (except deep convection)
- Use two Gaussians to described the sub-grid PDF of each quantity

- Unifies deep and shallow convection schemes
- Generates forced/free/dry shallow convection + deep convection
- Accounts for sub-grid mesoscale flows

UNICON vs CLUBB is "either – or" decision (*or "neither"*). External panel is evaluating.

CMA physics - Recent Progress

Orographic scheme

- GWD [Kim and Arakawa 1995]
- Low level **blocking** [Lott and Miller 1997]
- Turbulent form drag [Beljaars 2003]
- **Convection** Shallow: Mass flux parameterization replaces turbulent diffusion-based approach
 - Deep: Improve the entrainment rate and moment transfer convective overshooting
 - Include CTEI cloud-top entrainment instability
 - Modify **stable boundary layer local closure** scheme

Dynamics-physics coupling

• physics moving to C-P grid (as dynamics)

CMA - Future Plans

- Improve cloudiness parameterization and its effect on radiation
- Improve coupling accuracy of dynamic-physics and interaction of physics
- Implementation **non-orographic GWD** scheme
- Develop the **trigger functions suitable for East Asia** and Improve the cloud microphysics representation in convective parameterization
- Development of Eddy-Diffusivity Mass-Flux (EDMF) to stratocumulus and dry boundary layers as used in ECMWF model
- To a scale-aware physics
 - scale-aware convection scheme under research

Canadian centre: recent developments in physical parametrizations

Ongoing work

- 1. Sensitivity studies w.r.t. vertical resolution
 - to accommodate the planned increase in vertical resolution (especially in the boundary layer)
- 2. Changes to the **PBL scheme** (currently TKE 1.5 closure)
 - add non-local cumulus term (Lock & Mailhot, BLM 2006)
 - introduce turbulent total energy (TTE) approach (Mauritsen et al. 2007)
 - explore distributed drag alternative (Beljaars et al. 2004)
- 3. Adjustments to the calculation of **surface turbulent fluxes** (mainly over the oceans) to address problem of excessive moisture fluxes
- 4. Revision of **shallow convection** scheme
- 5. Explore stochastic parametrizations

nvironment Environnement

Canada

Canada

- PBL scheme: add stochastic forcing to TKE equation
- Convection (Plant-Craig scheme)
- 6. New microphysics scheme (see following slides)

New Bulk Microphysics Parameterization:

Predicted Particle Properties (P3) Scheme*

Based on a conceptually different approach to parameterize ice-phase microphysics.

NEW CONCEPT

"free" category – predicted properties, thus freely evolving type vs.

"fixed" category – traditional; prescribed properties, pre-determined types (e.g. "snow", "graupel", etc.)

Compared to traditional (ice-phase) schemes, P3:

- avoids some intrinsic problems (category conversion, fixed properties)
- has self-consistent physics
- is better linked to observations
- early results are very competitive with detailed, well-tuned schemes
- is more computationally efficient

* Morrison and Milbrandt (2015) (P3, part 1) J. Atmos. Sci.

New Bulk Microphysics Parameterization: Predicted Particle Properties (P3) Scheme

A given (free) category n can represent any type of ice-phase hydrometeor

Prognostic Variables:		
$\boldsymbol{Q_{dep}}(n)$ – deposition ice mass mixing ratio	[kg kg⁻¹]	
$\boldsymbol{Q}_{rim}(n)$ – rime ice mass mixing ratio	[kg kg ⁻¹]	
$N_{tot}(n)$ – total ice number mixing ratio	[# kg ⁻¹]	
$\boldsymbol{B}_{rim}(n)$ – rime ice volume mixing ratio	[m ³ kg ⁻¹]	
Predicted Properties:		
$F_{rim}(n)$ – rime mass fraction, $F_{rim} = Q_{rim} / (Q_{dep} + Q_{rim})$	[]	
$\rho_{rim}(n)$ – rime density, $\rho_{rim} = Q_{rim} / B_{rim}$	[kg m ⁻³]	
$m{D}_{m{m}}(n)$ – mean-mass diameter, $D_m \propto (Q_{dep} + Q_{rim})$ / N_{tot}	[m]	
$V_m(n)$ – mass-weighted fall speed, $V_m = f(D_m, \rho_{rim}, F_{rim})$	[m s ⁻¹]	
etc.		

Diagnostic Particle Types:

Based on the predicted properties (rather than pre-defined)

1-km WRF Simulations with P3 (1 category configuration): Quasi-real case 3D simulation of a severe squall line

Diagnostic Types:

 $F_r \sim 0.01$

 ρ ~ 900 kg m-3

V ~ 0.3 m s⁻¹

Vertical cross section of model fields (t = 6 h)

This realistic range of particle types is simulated using only <u>one (free) ice-phase category</u>

$$D_m \sim 100 \ \mu m$$

→ small crystals
 $F_r \sim 0$
 $\rho \sim 50 \ kg \ m-3$
 $V \sim 1 \ m \ s^{-1}$
 $D_m \sim 3 \ mm$
→ aggregates

×

$$F_r \sim 1$$

 $\rho \sim 900 \text{ kg m}^{-3}$
 $V > 10 \text{ m s}^{-1}$
 $D_m > 5 \text{ mm}$
 \rightarrow hail

Recent model upgrades

- Major upgrades to seamless global modelling system (GA6)
- **Operational in Jul 2014**
 - **ENDGame** dynamical core
 - Major package of physics changes
- Following global models, upgrades to regional convective-scale models
- **Operational Feb 2015**
 - ENDGame dynamical core
 - Improvements to physics greyzone "blended" turbulence, warm rain microphysics, cloud assimilation,...

• Blended BL scheme much better than control, giving improved stratocumulus and screen temperatures

•Sc still breaks into broken cloud too much

0.1 - 0.25 0.25 - 0.5 0.5 - 1 1 - 2 2 - 4 4 - 8 8 - 16 16 - 3232+ mm/hr

Met Office

Short term plans (Global Atmosphere 7.0, spring 2016)

- Convection: Improvements to accuracy and conservation properties of current scheme; CAPE closure timescale dependent on large scale vertical velocity
- Clouds and Radiation: Improved treatment of gaseous absorption; convective cores seen by radiation; link between critical relative humidity for cloud initiation and sub-grid variability of T and q; forced convective clouds; McICA upgrades; New ice optical properties
- Microphysics: more realistic ice PSD; new warm rain microphysics, turbulent production of liquid water
- Boundary layer: Revised cloud top entrainment
- Gravity-wave drag: Implement heating due to gravity-wave dissipation
- Land surface: New multi-layer snow scheme; revised tile types, improvements to surface albedo; including over ocean surface

- 14 January 2015 Implementation:
- Radiation modifications.
- Reduced drag coefficient at high wind speeds.
- Stationary convective gravity wave drag.
- Soil moisture climatology from CFSv2.
- Changes to roughness length calculations.

2016:

- Convective upgrade.
- Land and surface layer upgrades.

2017:

- Aerosol prediction initially lower resolution used as forcing in high resolution.
- WAM Whole Atmosphere Model initially lower resolution up to 600km.
- Wave-atmosphere interaction: Ocean surface stress/wave-state (WAVEWATCH III).

NCEP

NAM Oct 2014:

- RRTM radiation scheme.
- Ferrier-Aligo microphysics; tuned to improve severe storm structure; Convection: Modified BMJ (moister profiles) to improve 12km parent bias; explicit in nests.

NAM Late 2015:

- CONUS/Alaska nest to 3km, explict convection in AK nest.
- New shallow convection scheme in 12km parent NAM; improves cold season QPF bias; more frequent calls to radiation/physics.

HWRF (Hurricane):

- *"Advanced physics tailored for hurricane conditions"*, Noah LSM.
- Land/LDAS (Noah land-surface model):
- Dynamic vegetation/CO2/explicit canopy, 3-layer snow, groundwater/hydrology/streamflow to oceans.

Waves/WAVEWATCH III, Ocean:

• Air-Sea-Wave flux interaction, 2-way wave-ocean coupling.

WGNE-30, NCEP/EMC, NCWCP, College Park, Maryland, USA, 23-26 March 2015