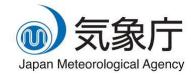
Initial Drifts/Shocks: WGSIP's Long-Range Forecast Transient Intercomparison Project

William Merryfield¹, Mikhail Tolstykh^{2,3}, Francisco Doblas-Reyes⁴,

Tamaki Yasuda⁵, and Woo-Sung Lee¹


¹Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada ² Institute of Numerical Mathematics, Russian Academy of Sciences ³ Hydrometcentre of Russia ⁴Barcelona Supercomputing Center ⁵Meteorological Research Institute/Japan Meteorological Agency

Environment and Climate Change Canada Environnement et Changement climatique Canada

Introduction

- LRFTIP is an initiative of WCRP's Working Group on Subseasonal to Interdecadal Prediction (WGSIP)
- Purpose is to enable multi-model inter-comparison studies of the transient behavior of coupled long-range forecast models evolving from observation-based initial conditions. (WMO defines long-range forecasting as from 30 days up to years.)

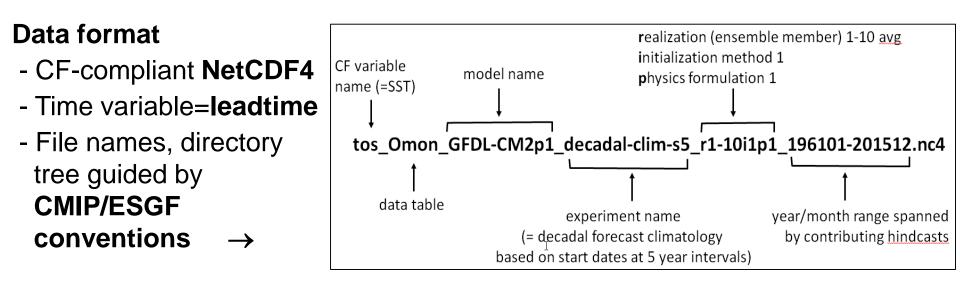
Objectives

- 1) Develop a **multi-model online archive** of hindcast climatologies and related diagnostics including systems contributing to S2S, CHFP, DCPP
- 2) Develop standard diagnostics characterizing forecast shock/drift
- 3) Address science questions, including
 - influence of different initialization methods on transient behavior of climate model components
 - identification of any impacts (likely negative) on climate forecast quality

Approach

- For a particular model and start date, hindcasts are averaged over available years and ensemble members to form a *hindcast climatology*
- When available, climatologies are also constructed for
 - Freely running model (e.g. CMIP historical simulations, averaging over multiple ensemble members)
 - Hindcast initial conditions = assimilating model run or analysis used for initialization, alternatively use observational reference dataset
- These represent "endpoints" of hindcast drifts, with differences from hindcast climatology indicating evolution away from initial conditions, toward model's own climate:

hindcast climatology


model climatology (historical simulation)

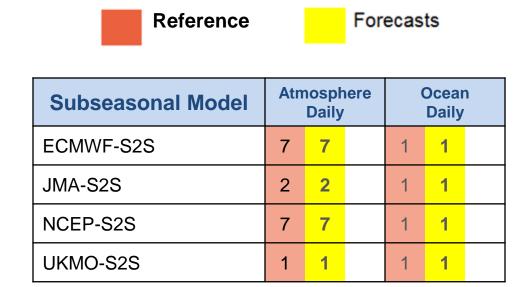
- Community input is invited and indeed sought, including
 - Suggestions for shock/drift diagnostics
 - Data contributions for models and/or initialization methods not in archive

Data Archive

Time scales represented for different forecast types

- Subseasonal: daily to 30/60 days
- Seasonal: daily to 30/60 days + monthly through forecast range
- Decadal: daily to 30/60 days + monthly/annual through forecast range

Data location: http://dapp2p.cccma.ec.gc.ca/pub/goapp/LRFTIP/


- Can be accessed from https://www.wcrp-climate.org/wgsip-projects/lrftip (web search "LRFTIP"), includes data specification document

Current Status

Models: The LRFTIP archive currently includes

- 4 subseasonal forecast models (S2S)
- 19 seasonal forecast models (CHFP, ENSEMBLES)
- 15 decadal forecast models (CMIP5, ENSEMBLES)

Variables: Number of variables for each model, climate system component, and averaging interval are shown in tables

S2S data processed by Mikhail Tolstykh and Tatiana Krasjuk, INM-RAS

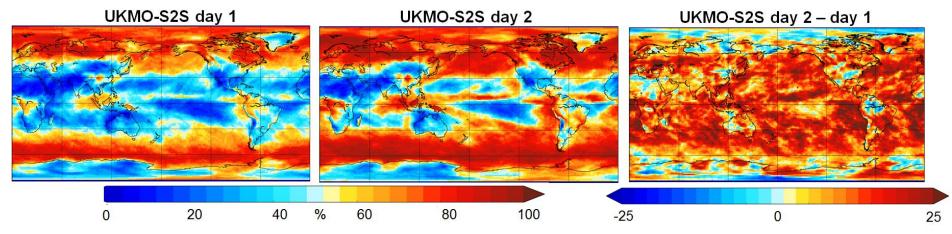
Current Status - Seasonal

Reference

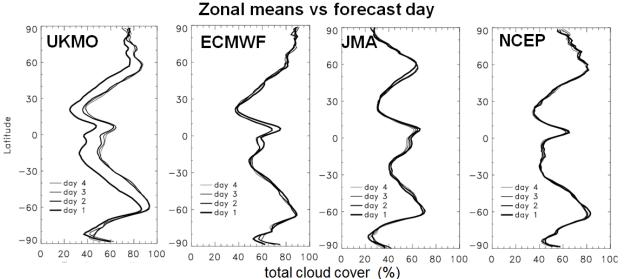
Forecasts

Seasonal Model	Atm	Atmosphere Daily			Atmosphere Monthly		Ocean Monthly		Land Ionth		Sea lco Ionthl		
CanCM3	18	22		22	22		12	12		4	1	2	
CanCM4	18	22		22	22		12	12		4	1	2	
ECMWF-S4				18	20					1			
JMAMRI-CGCM1	12	16		20	20		6	7					
JMAMRI-CGCM2				19	21		6	6		13		13	
MIROC5_v1.0	12	18		16	18		6	7					
MPI-ESM-LR				20	22								
POAMA p24a/b/c				12	13								
ARPEGE		1		7	7								
CFS_SHFP	3	3		8	7								
CMAM	3	5		7	7					10		10	
GloSea4		1		7	7								
GloSea5		1		7	7								
ENSEMBLES (CMCC- INGV, ECMWF-S3, IFM- GEOMAR, MF, DePreSys, HadGEM2	16	20		20	20					1			

Current Status - Decadal

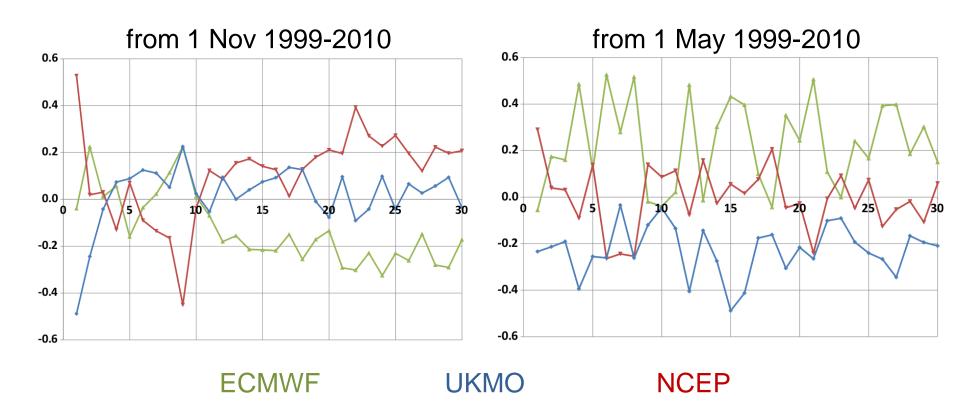

Analysis / Initial Conditions Forecasts

Historical Simulations


Decadal Model	Atn	nosp Daily			nosp Ionth	here Ily		nosp Yearl	here y		Ocea /Iontl			Ocea Yearl			Land nth/y			Sealo hth/Ye	
CCSM4 (i1,i2)					24	24		24	24		8	9		8	9		3	3		2	2
MF-ENSEMBLES					20			20			11			11			1				
CFSv2(i1,i2)					26			26			7			7			1			2	
CanCM4 (i1,i2)	25	16	6	25	26	17	25	26	17	13	13	13	13	13	13	4	3	2	2	2	2
CNRM-CM5		6	6		26	26		26	26		10	10		10	10		3	3		2	2
ECMWF-ENSEMBLES					20			20			11			11			1				
GFDL-CM2p1					18	18		18	18		11	11		11	11		2	2		2	2
HadCM3		9	9		25	25		25	25		6	6		6	6		3	3		2	2
IFM-ENSEMBLES					20			20			11			11			1				
MIROC5		20	20		26	26		26	26		7			7			3	3		2	2
MRI-CGCM3		6			26			26			10			10			3			2	
UKMO-DePreSys-ENS					20			20									1				
UKMO-HadGEM2-ENS					20			20									1				
EC-EARTH					19	17		19	17		7	3		7	3					2	2
BCC-CSM1.1		6	6		26	26		26	26		7	7		7	7					2	2
CNRM-CM5		6	6		26	26		26	26		10	10		7	7		3	3		2	2

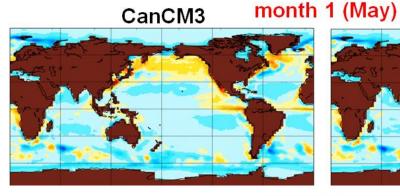
Sample Diagnostics - Subseasonal

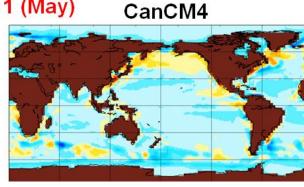
• Total cloud cover in first days of hindcasts initialized near 1 Nov



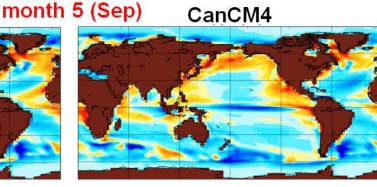
- UKMO model shows large transient relative to other models.
- Low initial cloud cover is a result of initializing UKMO model with ERA-Interim fields

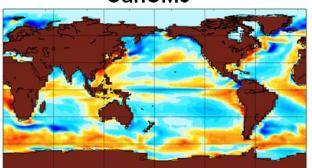
Sample Diagnostics - Subseasonal

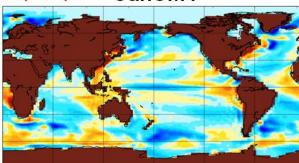

- Daily precipitation minus GPCP reference climatology
- Averages over North Atlantic region


Plots courtesy of Mikhail Tolstykh

Sample Diagnostics - Seasonal

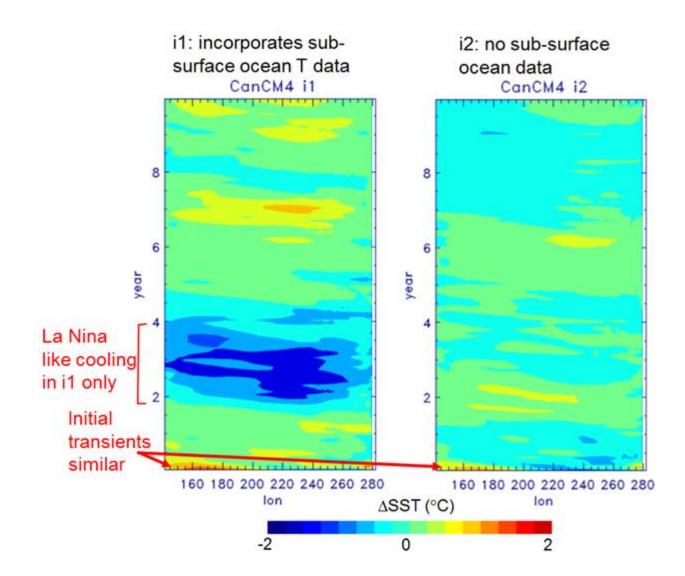

SST biases developing in hindcasts initialized **1 May** in two models having same ocean, different atmospheric components (vs OISST reference)


CanCM3

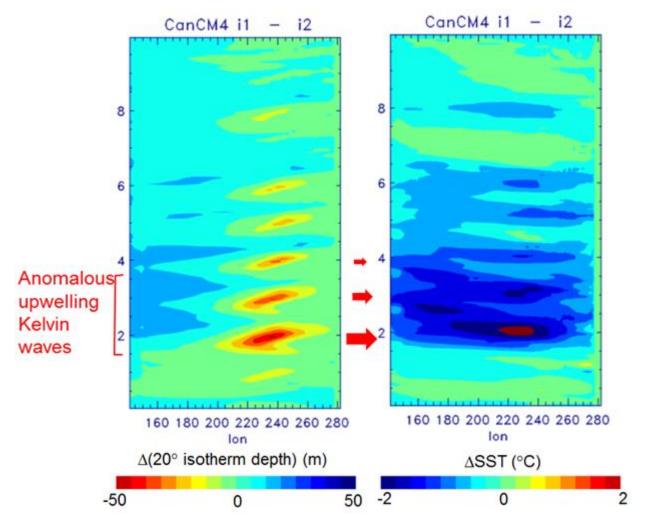


CanCM3

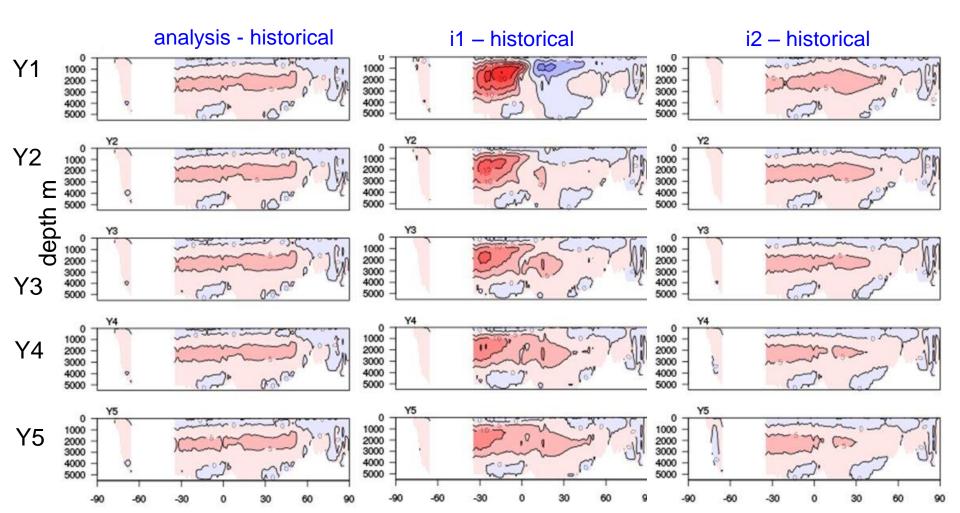
month 9 (Jan) CanCM4



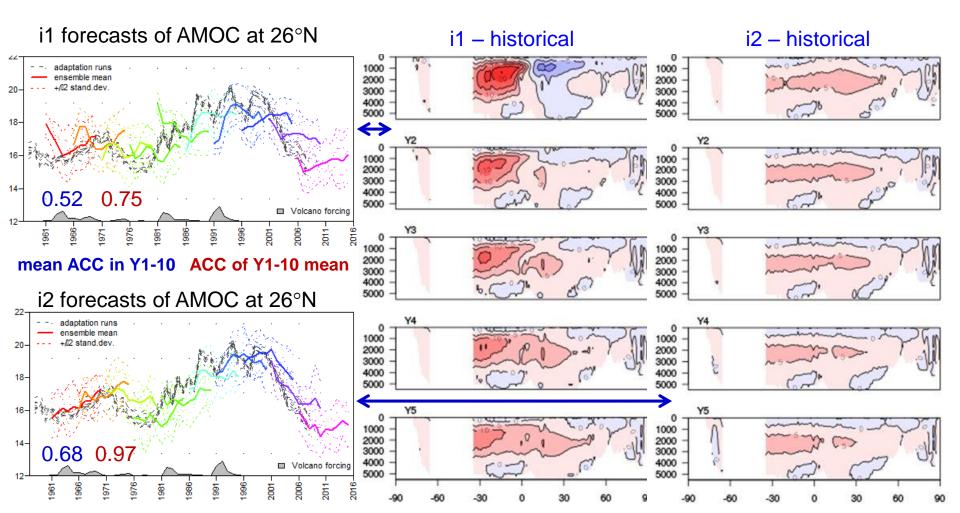
5 0 -5 \triangle SST (°C)


 Drift evolution of SST across equatorial Pacific in 10 decadal prediction models, showing El Niño and La Niña-like transients

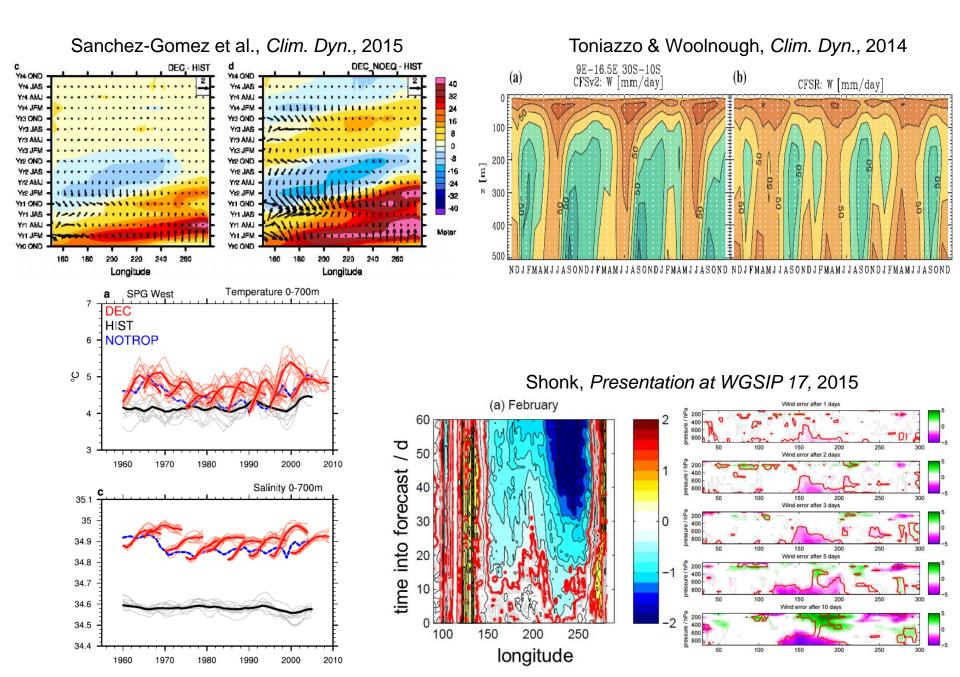
Same except for CanCM4 using two different ocean initialization methods:
i1 includes subsurface data, i2 = surface initialization only



 differences (i1–i2) in 20°C isotherm depth (left) and SST (right), showing La Niña-like transient excitation by anomalous upwelling Kelvin waves in years 2-6


Another comparison between CanCM4 i1 vs i2 intializations

- Evolution of Atlantic meridional overturning: differences from historical
- CanCM4 assimilating analysis (used for initialization of seasonal/decadal forecasts), i1 and i2-initialized hindcasts


Another comparison between CanCM4 i1 vs i2 intializations

- Evolution of Atlantic meridional overturning: differences from historical in years 1-5
- CanCM4 assimilating analysis (used for initialization of seasonal/decadal forecasts), i1 and i2-initialized hindcasts

- Large multi-model archive of hindcast climatologies has been developed
- Ancillary climatologies (reference/obs, initial condition, historical simulation) aid in identifying and characterizing transient behavior
- Data structure guided by CMIP/ESGF conventions
- Sample diagnostics point to **diversity of model transient behavior**
- Site to include library of diagnostic plots
- Resource for community investigations of shock/drift phenomena in initialized climate predictions
- Community input welcome, including
 - Suggestions for shock/drift diagnostics
 - Data contributions for models and/or initialization methods not in archive
- Data & documents can be accessed through WCRP project web page (search "LRFTIP")

Some of the many hindcast climatology diagnostics examined in recent studies

Atmosphere 2D (CMOR Tables day, Amon) - 1

Variable name	Description	CF Standard Name	unit	realm	freq	pri- ority
clt	Total Cloud Fraction	cloud_area_fraction	%	atmos	d,m,y	1
evspsbl	Evaporation	water_evaporation_flux	kg m-2 s- 1	atmos	d,m,y	2
hfss	Surface Upward Sensible Heat Flux	surface_upward_sensible_heat_flux	W m-2	atmos	d,m,y	1
hfls	Surface Upward Latent Heat Flux	surface_upward_latent_heat_flux	W m-2	atmos	d,m,y	1
huss	Near-Surface Specific Humidity	specific_humidity	1	atmos	d,m,y	2
pr	Precipitation	precipitation_flux	kg m-2 s- 1	atmos	d,m,y	1
psl	Sea Level Pressure	air_pressure_at_sea_level	Ра	atmos	d,m,y	1
rlds	Surface Downwelling Longwave Radiation	surface_downwelling_longwave_flux_in_air	W m-2	atmos	d,m,y	1*
rlus	Surface Upwelling Longwave Radiation	surface_upwelling_longwave_flux_in_air	W m-2	atmos	d,m,y	1*
rlut	TOA Outgoing Longwave Radiation	toa_outgoing_longwave_flux	W m-2	atmos	d,m,y	1**
rsds	Surface Downwelling Shortwave Radiation	surface_downwelling_shortwave_flux_in_air	W m-2	atmos	d,m,y	1*
rsdt	TOA Incident Shortwave Radiation	toa_incoming_shortwave_flux	W m-2	atmos	d,m,y	1**
rsut	TOA Outgoing Shortwave Radiation	toa_outgoing_shortwave_flux	W m-2	atmos	d,m,y	1**

Atmosphere 2D (CMOR Tables day, Amon) - 2

rsus	Surface Upwelling Shortwave Radiation	surface_upwelling_shortwave_flux_in_air	W m-2	atmos	d,m,y	1*
tas	Near-Surface Air Temperature	air_temperature	К	atmos	d,m,y	1
tasmax	Daily Maximum Near- Surface Air Temperature	air_temperature	К	atmos	d,m,y	2
tasmin	Daily Minimum Near- Surface Air Temperature	air_temperature	К	atmos	d,m,y	2
tauu	Surface Downward Eastward Wind Stress	surface_downward_eastward_stress	Ра	atmos	d,m,y	1
tauv	Surface Downward Northward Wind Stress	surface_downward_northward_stress	Ра	atmos	d,m,y	1
ts	Surface Temperature	surface_temperature	К	atmos	d,m,y	1
uas	Eastward Near-Surface Wind	eastward_wind	m s-1	atmos	d,m,y	2
vas	Northward Near-Surface Wind	northward_wind	m s-1	atmos	d,m,y	2

Atmosphere 3D (CMOR Tables day, Amon)

Variable name	Description	CF Standard Name	unit	realm	freq	pri- ority
hus	Specific Humidity	specific_humidity	1	atmos	d,m,y	1
ta	Air Temperature	air_temperature	К	atmos	d,m,y	1
ua	Eastward Wind	eastward_wind	m s-1	atmos	d,m,y	1
va	Northward Wind	northward_wind	m s-1	atmos	d,m,y	1

Ocean 2D (CMOR Tables day, Omon)

Variable name	Description	CF Standard Name	unit	realm	freq	pri- ority
hc300*	upper 300m heat content	heat_content_to_300m_depth	К	ocean	d, m,y	2
mlotst	Ocean Mixed Layer Thickness Defined by Sigma T	ocean_mixed_layer_thickness_defined_by_sig ma_t	m	ocean	m,y	1
msftbarot	Ocean Barotropic Mass Streamfunction	ocean_barotropic_mass_streamfunction	kg s-1	ocean	m,y	1
msftmyzv***	Ocean Meridional Overturning Volume Streamfunction	ocean_meridional_overturning_volume_stream function	m3 s-1	ocean	m,y	2
sos	Sea Surface Salinity	sea_surface_salinity	psu	ocean	m,y	1
t20d*	20 degree isotherm depth	ocean_20_degree_isotherm_depth	m	ocean	d, m,y	2
thetaoeq**	Equatorial cross section of sea water potential temperature	equatorial_sea_water_potential_temperature	К	ocean	d,m,y	2
tos	Sea Surface Temperature	sea_surface_temperature	К	ocean	d,m,y	1
zos	Sea Surface Height Above Geoid	<pre>sea_surface_height_above_geoid</pre>	m	ocean	m,y	1

Ocean 3D (CMOR Table Omon)

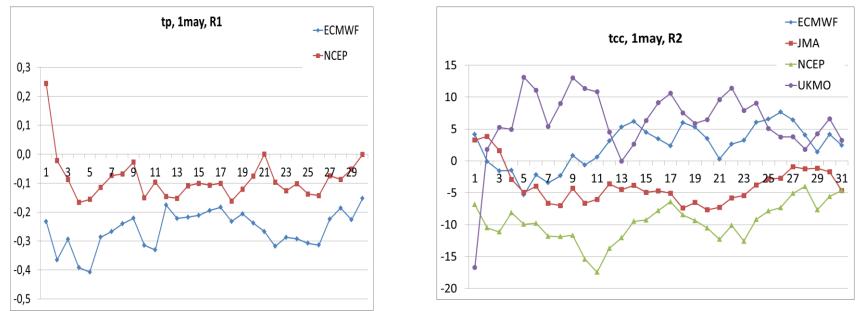
Variable name	Description	CF Standard Name	unit	realm	freq	pri- ority
SO	Sea Water Salinity	sea_water_salinity	psu	ocean	m,y	1
thetao	Sea Water Potential Temperature	sea_water_potential_temperature	К	ocean	m,y	1
uo	Sea Water X Velocity	sea_water_x_velocity	m s-1	ocean	m,y	1
vo	Sea Water Y Velocity	sea_water_y_velocity	m s-1	ocean	m,y	1
wo	Upward Ocean Velocity	upward_ocean_velocity	m s-1	ocean	m,y	1

Land (CMOR Tables Lmon, Llmon)

Variable name	Description	CF Standard Name	unit	realm	freq	pri- ority
mofso	Soil Frozen Water Content	soil_frozen_water_content	kg m-2	land	m,y	2
mrso	Total Soil Moisture Content	soil_moisture_content	kg m-2	land	m,y	1*
mrsov	Total Volumetric Soil Moisture (Liquid and Solid) Content	volume_fraction_of_water_in_soil	1	land	m,y	1*
snw	Surface Snow Amount	surface_snow_amount	kg m-2	land	m,y	1

Sea Ice (CMOR Table Olmon)

Variable name	Description	CF Standard Name	unit	realm	freq	pri- ority
sic	Sea Ice Area Fraction	sea_ice_area_fraction	%	sealce	m,y	1
sit	Sea Ice Thickness	sea_ice_thickness	m	sealce	m,y	1


Time-Invariant Fields (CMOR Table fx)

Variable name	Description	CF Standard Name	unit	realm	dimens ionality	pri- ority
areacella	Atmosphere Grid-Cell Area	cell_area	m2	atmos	ху	1
sftlf	Land Area Fraction	land_area_fraction	%	atmos	ху	1
mrsofc	Capacity of Soil to Store Water	soil_moisture_content_at_field_capacity	kg m-2	land	ху	2
areacello	Ocean Grid-Cell Area	cell_area	m2	ocean	ху	1
basin	Region Selection Index*	region	1	ocean	ху	1
deptho	Sea Floor Depth	sea_floor_depth_below_geoid	m	ocean	ху	1
thkcello	Ocean Model Cell Thickness	cell_thickness	m	ocean	Z	2

Subseasonal part of the Long-Range Forecast Transient Intercomparison Project

Mikhail Tolstykh, William Merryfield, Tatiana Krasjuk

- Creating an archive of daily hindcast climatologies produced by coupled models from the WMO S2S project database.
- Inform on transient behavior of initialized coupled prediction during 1st forecast month
- Starting dates 1st of May and 1st of November (+/-1day).
- Sample plots: averaged over 1996-2010 (1999-2010 for NCEP) daily anomalies w.r.t. reanalysis. Tropical Pacific precip (left) and North Atlantic total cloud cover (right) anomalies

