Numerics of the new Earth System Model at the CSIR

Francois Engelbrecht CSIR Natural Resources and the Environment

With numerous contributions from John McGregor (CSIRO)

Variable-resolution Earth System Model (VrESM)

The Variable-resolution Earth System Model (VrESM): A CSIR-CSIRO collaboration

- First African-based ESM, developed through an African lens
- Atmospheric component: Conformal-cubic atmospheric model (CCAM) of CSIRO (Australia)
- Ocean component: Variable-cubic ocean model (VCOM) of CSIR (South Africa)
- Land-component: CSIRO Atmosphere-Biosphere Land Exchange model (CABLE)
- Ocean biochemistry: PISCES (from LOCEAN)
- Cube-based grid: options available for conformal-cubic, equi-angular gnomonic cubic or equal area (UJ); quasi-uniform 50 km res grid in horizontal;
- New ocean model VCOM and also CCAM never applied in CMIP before!

VrESM CMIP6 simulations

• Key VrESM areas of focus:

numerics on cube-based grids;
 convective rainfall parameterisation –
 African focus; southern African biomass
 burning aerosols and Atlantic Sc cloud
 deck; parameterisations for plant functional types in African savannahs;
 parameteriations for Southern Ocean
 sub-mesoscale eddies and carbon fluxes

- VrESM DECK and historical runs are to be submitted by May 2018.
- VrESM ScenarioMIP is to be submitted by September 2018.
- VrESM is also to contribute to CMIP, HighresMIP and PMIP in 2019
- VrESM development is led by Francois Engelbrecht (CSIR, South Africa; fengelbrecht@csir.co.za)

Time evolution of the SH jet stream meridional position (a), vertical position (b) and strength (c) in CMIP6 AMIP simulations (red) and NCEP reanalysis (blue) for 1-yr running mean daily anomalies. The corresponding 5-yr running mean anomalies are shown in (d) to (f)

Alternative cubed-sphere grids

All grids shown at C32 resolution Uniform Jacobian (equal area) grid UJ-grid seems to have been independently developed by Jim Purser (NOAA) and Motohiko Tsugawa (JAMSTEC)

Vertex views of C48 grids

CCAMe – equal-area dynamical core

- very similar numerics to CCAM, but formulated on the (nonorthogonal) equal-area grid
- employs covariant and contravariant wind components, used for advection, etc.
- provides uniform resolution
- semi-Lagrangian, semi-implicit time-stepping
- reversible staggering transforms the contravariant winds to the staggered positions needed for calculating divergence and gravitywave terms
- requires a larger stencil for the Helmholtz equation (whilst also using vertical eigenvector decomposition)
 - presently using SOR with many iterations
 - straightforward to solve using multigrid
- can use CCAM special treatments near orography and for nonhydrostatic treatment

VCOM dynamical core

- Formulated on equal-area (uniform Jacobian) grid
- Provides uniform resolution
- Flux form formulation of the Boussinesq equations
- 2D Le Veque (1996) advection
- forward-backward (F-B) split-explicit solver for gravity waves
- reversible staggering transforms the contravariant (and covariant) winds to the staggered positions needed for calculating divergence and gravity-wave terms
- Fox-Kemper parameterisation for mixing induced by sub-mesocale eddies

Variable-cubic Ocean Model (VCOM)

$$\frac{\partial u_{\alpha}}{\partial t} = (f+\zeta) E_{\alpha\beta} u^{\beta} - K_{;\alpha} - w \frac{\partial u_{\alpha}}{\partial z} - \frac{1}{\rho_0} p_{;\alpha} + F_{\alpha},$$
(1)

$$\frac{\partial\theta}{\partial t} = -(\theta u^{\alpha})_{;\alpha} - \frac{\partial w\theta}{\partial z} + D_{\theta}, \qquad (2)$$

$$\frac{\partial s}{\partial t} = -\left(su^{\alpha}\right)_{;\alpha} - \frac{\partial ws}{\partial z} + D_s,$$
(3)

$$\frac{\partial w}{\partial z} = -u^{\alpha}_{;\alpha} \tag{4}$$

$$\frac{\partial p}{\partial z} = -g\rho. \tag{5}$$

$$u_i = \overline{V} \cdot \bar{a}_i, \tag{6}$$

$$\overline{V} = u^i \bar{a}_i,\tag{7}$$

$$u^{\beta} = g^{\alpha\beta} u_{\alpha}, \tag{8}$$

$$G = \sqrt{g_{11}g_{22} - g_{12}g_{21}}.$$

$$\overline{a}_1 = \frac{\partial \overline{M}}{\partial x^1} = \frac{R}{r} \left[1 - \frac{\left(x^1\right)^2}{r^2}, \frac{x^1 R}{r^2}, -\frac{x^1 x^2}{r^2} \right]; \quad (17)$$

$$\overline{a}_2 = \frac{\partial \overline{M}}{\partial x^2} = \frac{R}{r} \left[-\frac{x^1 x^2}{r^2}, \frac{R x^2}{r^2}, 1 - \frac{\left(x^2\right)^2}{r^2} \right]. \quad (18)$$

$$g_{ij} = \frac{\partial \overline{M}}{\partial x^1} \cdot \frac{\partial \overline{M}}{\partial x^2} = \overline{a}_i \cdot \overline{a}_j = \frac{R^2}{r^4} \begin{bmatrix} R^2 + (x^2)^2 & -x^1 x^2 \\ -x^1 x^2 & R^2 + (x^1)^2 \end{bmatrix}$$
(19)

G7 gnomonic-cubic grid

CSIR our future through science

VCOM follows Tsugawa et al. (2008) but on equiangular grid

(9)

Location of variables in grid cells

All variables are located at the centres of quadrilateral grid cells.

In CCAM, during semi-implicit/gravity-wave calculations, u and v are transformed reversibly to the indicated C-grid locations.

Produces same excellent dispersion properties as spectral method (see McGregor, MWR, 2006), but avoids any problems of Gibbs' phenomena.

2-grid waves preserved. Gives relatively lively winds, and good wind spectra.

VCOM advection: 2D Le Veque (1996)

Low-order and high-order fluxes combined using MC-limiter Cartesian components (U,V,W) of horizontal wind are advected

 $G_{i,j-1/2}^t = vc_{i,j-1}$

$$c_{i,j}^{t+\Delta t} = c_{i,j}^{t} = \frac{\Delta t}{\Delta s} \left[F_{i+1/2}^{t} - F_{i-1/2}^{t} + G_{i,j+1/2}^{t} - G_{i,j-1/2}^{t} \right]$$

$$G_{i,j-1/2}^{ctu} = G_{i,j-1/2}^{t} - \frac{\Delta t}{2\Delta s} uv \left(c_{i,j-1} - c_{i-1,j-1} \right)$$

Standard upwind methods transmit fluxes parallel to coordinate axis

Transmission of fluxes in reality takes place parallel to the velocity vector

Message Passing (MPI) implementation

Original

Remapping of off-processor neighbour indices to buffer region Indirect addressing is used extensively in CCAM

- simplifies coding

HPC and codescalability

CCAM-TOM (CSIRO) scaling with 35 atmosphere levels and 30 ocean levels, suggesting excellent simulation speed for computing resources

- Computer clusters available to the project include the CHPC in South Africa (30 000 + CPUs VRESM allocation is currently ~ 3 000 000 core hours per quarter);
- The VRESM design has achieved some comparable resolution and computing times with less than 10% of the cores required by some more traditional coupling approaches.
- CSIR NRE data servers and CHPC VRESM allocated space currently amounts to 1500 TB

-16

Present-day observed (left) and simulated (right) annual rainfall totals over Africa; corresponding model bias (mm; bottom)

-32

Present-day observed (left) and simulated (right) annual rainfall totals over Africa; corresponding model bias (mm; bottom) prognostic aerosol scheme switched off