Recent activities related to EPS (operational aspects) Junichi Ishida and Carolyn Reynolds With contributions from WGNE members 32nd WGNE Exeter, United Kingdom, 9-12 October 2017 # **GLOBAL** ## Operational global (weather) EPS | Center | Resolutions | FC Range | Members | Initial perturbation, DA | Model Uncertainty | B.C. | Note | | |--------------------------|-----------------------------------|------------------|----------------------------------|---|---|---|---|--| | ECMWF
(Europe) | TCo639L91
TCo319L91
18/32km | 15d
46d | 51 | SV(Total energy norm) +
EnDA | SKEB (plan to terminate)
and Stochastic physics
(SPPT) (plan to use same
pert. Both in EDA and
ENS),SPP | coupling to ocean
model, EDA-based
land-surface pert.
in ENS Ics | Hindcast
dataset
increased | | | Met Office
(UK) | 20kmL70 | 7d | 17+1
44 for DA
100+ for DA | ETKF
En-4D-EnVar | Random Parameters (RP2) and SKEB2. | SST, Soil moisture
and deep soil
temperature | | | | Meteo France
(France) | T798(C2.4)
L90 | 4d | 35 | SV (Total Energy Norm)+
EnDA | A new set of 10 physical packages, new model pert. | N
SURFEX and pert. | | | | HMC
(Russia) | T169L31
25-30km | 10d | 12+1+1 | Breeding
EnDA or LETKF | N
SPPT | N
SST random pert. | | | | NCEP
(USA) | TL574L64
TL382L64 | 8d
+8d
35d | 41 | Ensemble Kalman Filter +
Tropical storm relocation | stochastic pert. to account
for random model errors
SKEB, SPPT, SHUM | N
Stochastic pert. of
land, couple with
ocean | Dynamical
core: Euler
to Semi-
Lgrangian | | | NRL/FNMOC
(USA) | T159L42
T359L60 | 16d | 20 | local ET | SKEB-mc | N
SST initial pert.
ocean, ice, wave
coupling | | | | CMC
(Canada) | 0.6° L40 | 16d | 20 | Ensemble KF | stochastic pert. of physical
tendencies and SKEB,
further pert. to the physics | new method to evolve SST and seaice | | | | DWD
(German) | 40km | 180h | 40 | LETKF | Physics parameter pert. | SST random pert. | Operation
by the end
of 2017 | | Black: current, Red: recent upgrade, green: planned or research ## Operational global (weather) EPS | Center | Resolutions | FC Range | Members | Initial perturbation, DA | Model Uncertainty | B.C. | Note | |------------------------|-------------------------------------|-------------------|----------------|---|---|---|--------------------------------| | CPTEC/INPE
(Brazil) | T126 L28
TQ213L42 | 15d
30d | 15 | EOF-based perturbation
EnKF | N | N | Couple with earth system model | | BoM
(Australia) | ~60kmL70 | 10d | 24 | ETKF | Random Parameters (RP2) and SKEB2. | N | | | JMA
(Japan) | TL479L100
TL479L100
TL319L100 | 11d
18d
34d | 27
13
13 | SV(Total energy norm) +LETKF Reduce tropical initial SV pert. | Stochastic perturbation of physics tendency | Rev, SST and
sea ice
Pert. on SST | | | CMA
(China) | T213 L31 | 10d | 15 | SV | SPPT | N | | | KMA
(Korea) | ~40kmL70
32km (p) | 12d | 24
44 | ETKF
Hybrid Ensemble 4D-Var | Random Parameters (RP2) and SKEB2. | N | | Black: current, Red: recent upgrade, green: planned or research # Model resolution upgraded / plan #### Upgraded - JMA - Increase number of vertical layers from 60 to 100 (top of 0.1hPa to 0.01hPa) - Unify 3 systems (for TC forecast, weekly forecast and 1month forecast) into 1 system #### Plan - Meteo France - Increase horizontal resolution from T798C2.4to T1198C2.2 - DWD - Start of operational production by the end of 2017 - Increase ensemble size from 40 to 80 for LETKF - CPTEC - Increase model resolution to TQ0213L42 - Extend the forecasts to the sub-seasonal range #### **Operational Issues** - •At its current version, the atmospheric model lacks of computing efficiency: - •It takes up to 50 min to forecast up to 15 days in TQ0126L028 - •It takes more than 3 hours to forecast up to 15 days in TQ0299L064 - •The implemented version of Bias Correction feature requires a history of forecasts of the past 60 days - •It takes too much time to compute in the operation ### Operational regional EPS | Center | Resolutions | FC Range | Members | Initial perturbation, DA | Model Uncertainty | B.C. | Note | |-----------------------------|--------------------------|------------|-----------------|---|---|--|-------------------------------------| | Met Office
(UK) | 2.2kmL70
1.5kmL70-120 | 54h | 11+1
18/24 | High Resolution Analysis + global EPS Convective ensemble DA | Stochastic physics using random parameter | Perturbing parameters in JULES | UM
Hourly
operation | | Meteo
France
(France) | 2.5km | 42h | 11+1 | Rescaled and centered from global EPS EDA or B-based random noise | SPPT | perturbations of surface | AROME | | DWD
(German) | 2.8km | 27h
45h | 20
40 | IFS, GMS, GME, GSM
Ensemble DA based on LETKF | Increase Pert. Parameters | Terminate to use IFS,
GMS, GME, GSM, start
to use Global ICON
EPS, soil moist pert. | COSMO
For
renewable
energy | | HMC
(Russia) | 2.2km | 48h | 10 | COSMO-S14-EPS | N
SPPT | COSMO-S14-EPS | COSMO | | JMA
(Japan) | 5kmL <mark>76</mark> | 39h | 10+1
20+1 | SV(Total energy norm)
Hybrid DA | N
Pert. tendency | JMA global EPS
Perturbed SST | asuca, Test-
operation | | NRL/FNMOC
(US) | 27/9/3km | 120h | 10+1 | Perturbed synoptic scales
Perturbed Rankine Vortex | N | GEFS/NAVGEM with synoptic perturbations | COAMPS-TC | | NRL/FNMOC
(US) | 45/15/5km | 72h | 20+1 | ETKF | Parameter variations | NAVGEM ensembles | COAMPS | | CMC
(Canada) | 15km | 72h | 20+1 | Interpolated from global EPS
Improved by global EPS | Stochastic pert. of physics | Global EPS
Improved by global EPS | GEM | | CMA
(China) | | | | Multi Scale Blending
(GEPS and LETKF) | RP | Global EPS | UM | | KMA
(Korea) | 3kmL70 | 45h | 23+1 | Downscale from Global EPS
LETKF | RP | Global EPS | UM | Black: current, Red: recent upgrade, green: planned or research # Model resolution upgraded / plan #### Upgraded - DWD - LETKF-based ensemble data assimilation with 40 members in assimilation cycle and 20 members in forecast - Met Office - Domain size increase - Forecast length increase from 36hours to 54 hours - JMA - Change model to use same as the deterministic model - Increase number of vertical layers from 48 to 76 - Plan - DWD - Resolution increase from 2.8 to 2.2 km, combined with larger model domain and increased number of model levels from 50 to 65 - Met Office - Run a small ensemble (3members) every hour and use time-lagging - Increase resolution from 2.2km to 1.5km (same as deterministic model) - Meteo France - From 12-hourly to 6-hourly productions, later increase ensemble size & resolution # Future upgrades - Studies have shown increasing ensemble size is of greater benefit to MOGREPS-UK than increasing the resolution (Hagelin et al 2017) - Implementing this would create large spike in computer use - -> Proposed alternative - Run a small ensemble (3 members) every hour and use time-lagging to create a larger ensemble (18 members per 6h cycle, there are 12 members per 6h cycle in the current setup) - This is planned to run as demonstration suite later in the year to assess the differences more thoroughly and give time for downstream systems to adapt - Resolution also planned to increase to 1.5 km (same as deterministic model) and the run length to t+120h www.metoffice.gov.uk ## Hourly ensemble schematic Takes advantage of UKV now running hourly 4DVar and the recent increase in number of global ensemble members Crown copyright Met Office