Table of contents

01. Assimilation of atmospheric and land observations. Data impact and sensitivity studies. Methodological advances

Author(s)	Paper title	Country	Pages
K.Araki, H.Seko, H.Ishimoto, T.Tajiri, K.Yoshimoto, M.Matsumoto, T.Takeda, Y.Kawano, K.Suzuki, K.Nakayama	Development of ground-based microwave radiometer network and monitoring system using 1-dimentional variational technique	Japan	1-03
D. Dutta, A. Routray, J.P. George, V.S. Prasad	Assimilation of Indian DWR Radial Velocity in Regional NCUM-R Model	India	1-05
K.B.R.R. Hari Prasad, A. Routray, S. Dutta, G. M. Mohan, V.S Prasad	Implementation of WRF based High Resolution Rapid Refresh system over East Indian Region	India	1-07
K.Nonaka	Operational use of Dual-Metop AMVs at high latitudes in JMA's global NWP system	Japan	1-09
J. Purser, M. Rancic, M. Pondeca	Inserting Intermediate Generations in a Multigrid Beta Filter using Offset Diagonal Grids and Characterizing the Analysis Error	US	1-11
M. Rancic, J. Purser, M. Pondeca, T. Lei, S. Yokota	Calibration of the Multigrid Beta Filter for Application in GSI and JEDI	US	1-13
S.I. Rani, V. S. Prasad, J.P. George	Satellite Microwave instruments in the low earth inclined orbits for NWP: Contribution from India	India	1-15
A. Routray, D.Dutta, J.P. George, V.S. Prasad	High Resolution Rapid Refresh Data Assimilation System at NCMRWF (India) for Convection Permitting Models	India	1-17
A.Routray, A.Lodh, D. Dutta, J.P. George	Soil Moisture Assimilation for Regional NCUM-R Model and its Benefits	India	1-19
H.Seko, Y.Ikuta, H.Ishimoto, K.Araki, T.Sakai, K,Yoshimoto, T.Nakamura, S.Shimizu	Data Assimilation Experiments of Ground-based Microwave Radiometer and small UAV by using Meso-NAPEX	Japan	1-21
H.Shimizu	Operational use of hyper spectral infrared sounder radiance data in JMA's meso-scale NWP system	Japan	1-23
R.Toguchi, T.Iriguchi	Operational Use of Surface Humidity Observations in JMA's Mesoscale NWP Systems	Japan	1-25
X. Wu, K. Wu, V. Tallapragada, F.M. Ralph	The Impact of Dropsonde Data on GFS Forecasts from 2022-2023 Atmospheric River Reconnaissance	US	1-27

02.Data sets, diagnostic and dynamical investigations, statistical post-processing, reanalysis, and associated studies

Author(s)	Paper title	Country	Pages
I.V. Chernykh	Spatiotemporal structure of the first- and second-order trends in air temperature in the 0-30-km atmospheric layer for the Northern and Southern Hemispheres from radiosonde data	Russia	2-03
I.Gorlach, A.Shishov	Deep convection and intense precipitation detection using geostationary weather satellite data: a case study of air-mass and concealed frontal convection	Russia	2-05

K.N. Kumar, S. Kaur, S. Singh, M.S. Thota, R. Ashrit, A. K. Mitra,	Statistical Bias Correction of NCMRWF Unified Model Precipitation Forecasts Based on Quantile Mapping Methods	India	2-07
B.K. Mahala, B.K. Nayak, P.K. Mohanty	Tropical cyclone activity in the Bay of Bengal during ENSO-IOD events	India	2-09
S. K. Mandke	Large-scale features of active and break phases during Indian summer monsoon 2022	India	2-11
S. K. Mandke	The association of West Pacific subtropical high variability with the Indian summer monsoon 2022	India	2-13
I.I.Mokhov, N.N. Medvedev	Amplitude-frequency characteristics of Equatorial Atlantic Mode variations from long-term observations	Russia	2-15
I.I. Mokhov, A.O. Nyrov	Coherence of the Antarctic ice core data from the Vostok station and EPICA	Russia	2-17
I.I.Mokhov, A.V. Timazhev	Frequency of winter atmospheric blockings in the Northern Hemisphere in different phases of El Nino, AMO and PDO	Russia	2-19
A. Prabhu, S. K. Mandke, G. Pandithurai	Low-level Cloud trends and its relationship with Indian Summer Monsoon	India	2-21
A. Prabhu, G. Pandithurai	Evolution of wind patterns over the tropical summer monsoon region influenced by wintertime southern annular mode in the recent decades	India	2-23
V.S. Prasad, U.Saha	Study of Extreme Weather Events over India using NCMRWF Global Reanalysis	India	2-25
S. I. Rani, J. P. George	IMDAA high resolution regional reanalysis for the Indian monsoon region	India	2-27
M.S.Thota, R. Ashrit, K. N. Kumar, A.J. Kumar, S. Mohandas, V.S. Prasad	Representation of moist processes in NCUM operational forecasts during boreal summer monsoon over India	India	2-29

03. Computational studies including new techniques, parallel processing, GPUs. Effects of model resolution

Author(s)	Paper title	Country	Pages
V.Gordin, G.Zhukova	Compact finite-difference schemes for quasi-linear conservation laws	Russia	3-03

04.Parameterization of atmospheric and surface processes, effects of different physical parameterizations

Author(s)	Paper title	Country	Pages
Z.N. Begum	Numerical Atmospheric Model Findings relevant to Solar Terrestrial Energy System and Global Climate	India	4-03
B.K. Mahala, K.L. Xalxo, P.K. Mohanty, A.Routray, S.K. Misra	Performance Assessment of WRF Parameterization Schemes on Simulation of Tropical Cyclone	India	4-05
R. Sun, F. Yang, S.Y. Hong, J.W. Bao, J. Han, E. Aligo, A. Cheng, G. Thompson, J. Dong, Q. Liu	Thompson Microphysics Updates in the Unified Forecast System	US	4-07

W. Wang, B. Liu, Z. Zhang	Further Improving Intensity Forecast of Tropical Cyclones in the NCEP Operational HAFS Model	US	4-09
K.L.Xalxo, B.K. Mahala, P.K. Mohanty, A.Routray, B.B. Mishra	Evaluation of Radiation Parameterization Schemes on Simulation of Tropical Cyclone	India	4-11
Y.Yamasaki, H.Kusabiraki	Improving the representation of topographic effects in JMA's regional NWP model	Japan	4-13
W. Zheng, J. Han, M. Barlage, F. Yang, H. Wei	Case Study of Low Convective Available Potential Energy Bias in the United Forecast System	US	4-15

05.Development of and studies with regional and convective-scale atmospheric models and ensembles

Author(s)	Paper title	Country	Pages
A. Jayakumar, S. Mohandas, T.J. Anurose, V.S.Prasad	Operational Convective-Scale Numerical weather prediction model and high resolution city scale model at NCMRWF	India	5-03
D. Blinov, A. Revokatova, I. Rozinkina, G. Rivin	Scores of Initial Data for Limited-Area Modeling System COSMO-Ru from GME/ICON Global systems during 2012-2022 years: evaluation and peculiarities	Russia	5-05
J.R. Carley, M.E. Pyle, C.R. Alexander, S. Weygandt	On the Development of NOAA's Rapid Refresh Forecast System	US	5-07
A. Hashimoto, R. Misumi	Numerical simulations of a warm rain event observed in Tokyo, Japan	Japan	5-09
H.Kawada, T.Kakehata, K.Kawano	Implementation of the SPPT scheme in JMA's Mesoscale Ensemble Prediction System	Japan	5-11
A.Revokatova, M. Nikitin, G. Rivin, I. Rozinkina, D. Blinov, E.Tatarinovich	Assessment of the impact of a modified sea ice edge on the forecast and development of polar lows: simulation of the case-study using the ICON model	Russia	5-13
K. Wu, X. Wu, V. Tallapragada, F.M. Ralph	Atmospheric River Analysis and Forecast System (AR- AFS): Sensitivity of Precipitation Forecasts in the U.S. West Coast to Microphysics and PBL Parameterizations	US	5-15

06.Developments in global forecast models, case studies, predictability investigations, global ensembles

Author(s)	Paper title	Country	Pages
A Mamgain	Global and Regional EPSs in simulating extremely severe tropical cyclonic storm FANI in a unified modeling framework	India	6-03
T.Kanehama, H.Yonehara, M.Ujiie	The impact of a high-accuracy high-resolution digital elevation model on numerical weather predictions	Japan	6-05
S.Kumar, A.G. Prajeesh , R. Phani, K. Roy, M.Ganai, T. Goswami, P. Mukhopadhyay	Development of a High-Resolution Global Forecast System Model with a Triangular Cubic Octahedral Grid	India	6-07
I.I. Mokhov	Predictability of climate anomalies in the North Eurasian regions during the spring-summer months in relation to El Niño: A case study for 2023	Russia	6-09

Y. Ota, J. Chiba, Y. Ichikawa, H.Oashi, T. Takakura, H. Yamaguchi	Upgrade of JMA's Global Ensemble Prediction System	Japan	6-11
H.Yamaguchi, J.Chiba, Y.Ichikawa, T.Takakura	Hindcast verification of JMA's GEPS for one-month prediction with a globally expanded two-tiered sea surface temperature approach	Japan	6-13
H.Yonehara, Y.Kuroki, M.Ujiie, C.Matsukawa, T.Kanehama, R.Nagasawa, K.Ochi, M.Higuchi, Y.Ichikawa, R.Sekiguchi, S.Hirahara	Upgrade of JMA's Operational Global Numerical Weather Prediction System	Japan	6-15

07.Global and regional climate models, sensitivity and impact experiments, response to external forcing, monthly and seasonal forecasting

Author(s)	Paper title	Country	Pages
M.M. Arzhanov, I.I. Mokhov, M. Parfenova	Bayesian estimates of snow cover characteristics in Eurasia based on simulations with an ensemble of climate models	Russia	7-03
M. Arzhanov	Estimates of methane emissions from wet ecosystems of Western Siberia in the mid-Holocene	Russia	7-05
A. Cheng, F. Yang, S. Moorthi	Aerosol Indirect Effects in UFS from Global Cloud Permitting Simulations	US	7-07
A.Chernokulsky, A.Narizhnaya, I.Mokhov, A.Rinke	Characteristics of clouds in the Arctic Ocean: Comparison of Arctic-CORDEX regional model's data with satellite observations	Russia	7-09
V.Malakhova, I.Mokhov, M. Arzhanov	Model estimates of the process of complete permafrost degradation under warming in the region of the Yamal Peninsula	Russia	7-11
I.I.Mokhov, A.M. Osipov, A.V. Chernokulsky	Atmospheric centers of action over oceans in the Southern Hemisphere: Possible changes in the 21st century from CMIP6 model simulations	Russia	7-13
I.I.Mokhov, N.N. Medvedev, A.V. Timazhev	Changes in coherence between different types of El- Nino from observations and model simulations	Russia	7-15
A.Narizhnaya, A.Chernokulsky, D. Handorf	Cold air outbreaks in the Barents Sea: dependence on sea-ice based on ECHAM6 model simulations	Russia	7-17

08.Development of and advances in ocean, sea-ice, and wave modelling and data assimilation

Author(s)	Paper title	Country	Pages
M.Hirabara, H.Asai, N.Usui	Improvement in JMA's Ocean Data Assimilation and Prediction System for the Seas Around Japan (JPN system)	Japan	8-03
X. Liu, A. Mehra, G. Vernieres, D. Kleist, H.C. Kim, E. Bayler, T. Sluka, S. Paturi	Ocean Color Data Assimilation and Coupled Ocean Physical-biogeochemical Reanalysis Efforts at NOAA/NCEP	US	8-05
A. A. Zelenko, Yu. D. Resnyanskii	Complex System of the Wind Waves Forecasting in the World Ocean and the Seas of Russia	Russia	8-07

09.Development of and studies with coupled and Earth system models and data assimilation systems

Author(s)	Paper title	Country	Pages
S.N.Denisov, I.I.Mokhov	Natural CO2 fluxes in Russia in the 21st century and their contribution to climate change: Multimodel estimates	Russia	9-03
A.Kamada, H.Yamaguchi, M.Kajino	Domain expansion and nudging method of JMA's Local Chemical Transport Model	Japan	9-05
K.N.Kumar, A.Gupta, I.M. Momin, A.K. Mishra, R. Ashrit, A.K. Mitra, V.S. Prasad	Implementation of subseasonal drought monitoring from NCMRWF Extended Range Prediction System	India	9-07
Sumit Kumar, I.M. Momin, J.P. George	Coupled global Numerical Weather Prediction System at NCMRWF (India) for medium range weather forecast.	India	9-09
E.Volodin	Activities of Marchuk Institute of Numerical Mathematics (INM RAS) in climate modelling	Russia	9-12
A.Wada	The impact of ocean coupling on the track simulation of Typhoon Nanmadol (2022)	Japan	9-14
A. Wada, W. Yanase, S. Tsujino	The impact of ocean coupling on the rainfall distribution of Typhoon Nanmadol (2022) at the landfall	Japan	9-16
A. Wada, W. Yanase, S. Tsujino	The impact of ocean coupling on the genesis of Typhoon Songda (2022) simulated by two atmosphere- ocean coupled models	Japan	9-18

10.Forecast verification: methods and studies

Author(s)	Paper title	Country	Pages
B.Casati, C.Lussana, A.Crespi	Scale-separation diagnostics and the Symmetric Bounded Efficiency for the inter-comparison of gridded products with different spatial resolutions	Canada	10-03
T. Hertneky, T. Jensen, M. Erickson	Methods for Evaluating High Impact Hydrometeorological Features using METplus	USA	10-05
 T. Jensen, J. Opatz, C. Kalb, D. Adriaansen, K. Newman, M. Harrold, M. Biswas, T. Hertneky, W. Mayfield, W. Li, B. Nelson, J. Vigh, M. Smith, J. English, L. Nance, B. Brown, M. Ek 	METplus Verification and Diagnostics Framework for Model Evaluation Across Scales	USA	10-07
C. Kalb, D. Miller, M. Gehne, Z. Wang, M. Win-Gildenmeister, G. McCabe, H. Fisher, T. Jensen, W. Li	Advances in METplus Verification for Subseasonal to Seasonal Model Evaluation	USA	10-09
A.Kirsanov, A.Bundel, M.Tarasova, E.Astakhova, J.Shuvalova	Using METplus for verification of COSMO-Ru/ICON modelling system	Russia	10-11