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Development of and advances in ocean, sea-ice, 

and wave modelling and data assimilation. 
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1. Introduction 

Since October 2020, JMA has operated an ocean data assimilation and prediction system (known as the JPN system) 

for the seas around Japan to support analysis and prediction of major currents (such as the Kuroshio), mesoscale 

eddies, high tides caused by oceanic conditions, rapid coastal currents, and sea ice conditions (Sakamoto et al. 2019; 

Hirose et al. 2019). The JPN system consists of an analysis part and a prediction part. The analysis part incorporates 

an eddy-resolving North Pacific model with reduced grid configuration (NPR) nested in a coarse global ocean model 

(GLB), and four-dimensional variational ocean data assimilation (NPR-4DVAR; Usui et al., 2015) is carried out for 

the NPR model. The prediction part comprises a fine-resolution (approx. 2 km) ocean model for the area around 

Japan (JPN) nested in an eddy-resolving North Pacific model (NP) with regular grid spacing that is also two-way 

nested in the GLB. NPR-4DVAR analysis provides water temperature and salinity data for initialization of the NP 

and JPN models. 

Bias reduction in assimilation of satellite altimetry data and version updating of the forecast models (Sakamoto et 

al. 2023) were applied to the operational system in February 2023. The bias reduction is reported here. 

 

2. Improvement in satellite altimetry data assimilation 

Sea level anomaly (SLA) data derived from satellite altimeters (𝜂obs) incorporate surface dynamic height anomaly 

(𝜂dyn), barotropic response to surface wind forcing (𝜂bt), changes in total sea water mass over the entire model 

domain (𝜂mass), and measurement errors. In the JPN system, the 𝜂dyn value obtained by subtracting non-steric 

components (𝜂bt and 𝜂mass) from 𝜂obs is used for assimilation to determine precise water temperature and salinity. 

Previously, both 𝜂bt  and 𝜂mass  were prescribed as monthly constants based on extrapolation from an ocean 

reanalysis experiment. To enhance accuracy, the monthly mean non-steric SLA averaged over the model domain is 

now estimated every day using the latest SLA and in-situ observation data, which is expected to allow more precise 

analysis of water temperature and salinity. To evaluate this, an experiment employing the updated SLA assimilation 

scheme (TEST) was conducted, and the results were compared with those from the previous control (CNTL) 

experiment. 

 

3. Results 

 The estimated non-steric SLA averaged over GLB largely follows the extrapolated time series, while estimated 

values for NPR diverge downward from the extrapolation (Figure 1). This implies non-steric SLA overestimation 

and 𝜂dyn underestimation for NPR-4DVAR in CNTL, leading to negative biases in water temperature. 

Water temperature biases against in-situ observation in NP subsurface layers at initial states are depicted in Figure 

2. The negative biases in CNTL decrease in TEST as expected. Reduced root mean square errors (RMSEs) are also 

seen in TEST (not shown). Figure 3 compares the biases and RMSEs of CNTL (blue) and TEST (red) averaged over 

the JPN model domain at initial states. The biases of CNTL are negative for most layers, and the negative biases of 

TEST are smaller than those of CNTL (Figure 3, top). TEST RMSEs are also smaller than those of CNTL almost 

everywhere (bottom). Error reduction associated with the smaller bias in the subsurface layer is seen for 10-day 

forecasts of the NP and JPN models (not shown). 

In summary, the improved SLA data assimilation reduces cold biases in subsurface layers for NPR-4DVAR and 

prediction errors in the NP and JPN models. 
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Figure 1 Monthly non-steric SLA 

averaged over the entire model 
domain (left: GLB; right: NPR). 
Black and red lines: monthly 
estimation; blue lines: 
extrapolation from black lines. 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 
Figure 2 Water temperature biases (model variable minus in-situ observation) at 100 m (left), 200 m (center) and 

400 m (right) at NP initial states. Daily observation data are compared with the nearest model grid point value, 
and biases are averaged within every 2.5∘ × 2.5∘ mesh. The verification period is July 2021 – May 2022. The 
top and bottom panels depict the biases of CNTL and TEST, respectively.  

 
 

   

   
 
Figure 3 Vertical profiles of bias (top) and RMSE (bottom) for water temperature over the JPN model domain  

(117 − 160∘E, 20 − 52∘N) at initial states for September 2021, January 2022 and May 2022. Top left: in-situ 
observation (black), CNTL (blue) and TEST (red); top center: CNTL and TEST biases; right: TEST – CNTL. 
Bottom left: CNTL and TEST RMSEs; right: TEST – CNTL. TEST – CNTL error bars denote a confidence 
level of 95%. 
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Ocean biogeochemical processes provide important geophysical feedback to the weather and climate systems through 
complex ocean biophysical and air-sea interactions. In recent years, multi-platform satellite observations provide nearly 
global coverage of surface ocean color with repeating daily cycles, enabling the assimilation of near real-time ocean 
color products (e.g. Chl-a, POC, Kd) in operational ocean forecast systems. This report describes the methodology and 
techniques used in the implementation of JEDI-based assimilation of multi-source ocean color products in 
NOAA/NCEP’s Unified Forecast System (UFS) - a preoperational, fully coupled Earth modeling and prediction system. 
We conducted a suite of multi-year ocean analysis experiments with this system, and evaluated the impact of ocean 
color data assimilation on ocean state predictions with a particular focus on skills at timescales of weeks to months. 
This work is in support of NOAA/NCEP’s subseasonal to seasonal prediction project. 

1. JEDI-based ocean color data assimilation 

Ocean color data assimilation efforts at NOAA/NCEP leverage the development of 1SOCA application of 2JEDI 
led by 3JCSDA, with contributions from NOAA/NCEP and other JCSDA partners. Data streams for the Level-2 and 
Level-3 NOAA-20/VIIRS, S-NPP/VIIRS, and Aqua/MODIS near real-time ocean color observations, as well as for the 
Level-4 daily VIIRS+OLCI multi-sensor gap-filled chlorophyll (chlor_a) analysis, were established from the providers 
(e.g., NOAA CoastWatch) to NOAA’s 4RDHPCS (e.g., machine “Hera” and “Gaea”). The required software to 
preprocess ocean color products for first-step quality control and ingestion by the JEDI system was developed to 
assimilate these observations in a six-tracer biogeochemistry model 5BLING (Dunne et al., 2020) coupled to 6MOM6 
(Adcroft et al., 2019), which was implemented as the global ocean 
component in the UFS. 

2. Coupled ocean physical-biogeochemical reanalysis 
The coupled ocean physical-biogeochemical reanalysis described 
in this report uses recently released versions of the UFS (Prototype-
8, DATM application at 0.25° horizontal resolution) and the SOCA 
model interface to the JEDI system. The variational method 
(3DVAR) uses the 7BUMP covariance training libraries provided 
within the 8SABER component of the JEDI system. The 
assimilated ocean color observations in this suite of experiments 
included S-NPP/VIIRS (NOAA CoastWatch), NOAA-20/VIIRS 
(OB.DAAC), and Aqua/MODIS (OB.DAAC) Level-3 chlor_a 
products, as well as the Level-4 gap-filled chlor_a analysis 
product (DINEOF, NOAA CoastWatch) described in Section 1. 
The coupled ocean reanalysis was run for a 2-year period from 
January 1, 2019 through December 31, 2020. 9GEFSRR was used 
as the retrospective atmospheric forcing for Year 2019, which was 
then replaced by 10CFSR for Year 2020. Results show that the 
coupled ocean physical-biogeochemical reanalysis had lower SST 
prediction errors at a global scale than the ocean physical-only 
reanalysis (Figure 1).  

3. Impact of ocean biogeochemical modeling and data assimilation on SST predictions 

Figure 1. A comparison of the global mean absolute SST 
prediction errors (observation minus model background, or 
o-b) between two experiments (DAphys: ocean physical-only 
reanalysis, purple line; DAphys,bgc: ocean physical-
biogeochemical reanalysis, red line) when compared against 
independent drifter measurements. Results show that the 
ocean physical-biogeochemical reanalysis generally had 
lower SST prediction errors. The yellow line shows the date 
on which the fully coupled UFS p8 was initialized after 
random ensemble perturbations (May 16, 2019). 
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To assess the impact of ocean biogeochemical modeling and ocean color data assimilation on the prediction skills of 
the UFS, we initialized a 12-member ensemble of the fully coupled UFS (with the BLING biogeochemical model 
enabled) reforecast experiments from the coupled ocean physical-biogeochemical reanalysis on May 16, 2019 after 
adding small perturbations to each ensemble member’s initial model analysis states, and monitored the prediction errors 
of 11SST out to 31 days in the fully coupled UFS.  We compared the ensemble mean performance of this UFS reforecast 
system (UFSphys,bgc), where ocean biogeochemical modeling and ocean color data assimilation were enabled, against 
the reference system (UFSphys), where only ocean physics were assimilated and simulated. Results showed that 
initializing UFS p8 (with BLING enabled) from the ocean reanalysis system, where ocean color observations were 
assimilated, resulted in a globally averaged reduction of 4.6% in SST prediction error with a regional reduction of up 
to 18% for subseasonal time scales (i.e., Weeks 2-4; Figs. 2,3). The improvement in SST prediction skills was 
particularly noticeable during Week 3 and Week 4 of the reforecast period (Fig. 2) 
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5BLING: Biogeochemistry with Light, Iron, Nutrients and Gas 
6MOM6: Modular Ocean Model version 6 
7BUMP: Background error on an Unstructured Mesh Package 
8SABER: System Agnostic Background Error Representation  
9GEFSRR: The Global Ensemble Forecast System Reforecasting and Reanalysis 
10CFSR: Climate Forecast System Reanalysis 
11SST: Sea Surface Temperature 

Key references: 
Adcroft, A., Anderson, W., Balaji, et al. (2019). The GFDL global ocean and sea ice model OM4.0: Model description and simulation features. Journal of 

Advances in Modeling Earth Systems, 11, 3167– 3211.  
Dunne, John P., I Bociu, Benjamin Bronselaer, et al. (2020). Simple Global Ocean Biogeochemistry with Light, Iron, Nutrients and Gas version 2 

(BLINGv2): Model description and simulation characteristics in GFDL's CM4.0. Journal of Advances in Modeling Earth Systems. 
DOI:10.1029/2019MS002008.  

Longhurst, A. (2007), Ecological Geography of the Sea, Academic Press, London. 

Figure 2. A comparison of the global mean absolute SST 
prediction errors (o-b) between two UFS reforecast 
experiments when compared against drifter measurements. The 
impact of ocean color data assimilation and ocean 
biogeochemical modeling on UFS’s SST prediction skills out 
to 31 days was evaluated where 1) monthly climatological 
chlor_a (blue lines, UFSphys) or 2) BLING simulated chlor_a 
concentration (red lines, UFSphys,bgc) was used in UFS’s MOM6 
opacity routine. Results show that SST prediction errors were 
lower after two weeks when the BLING model was included in 
the UFS reforecasts and properly initialized with ocean 
biogeochemical analysis.  
 

Figure 3. Mean regional difference in SST prediction 
errors (o-b) between the two UFS reforecast experiments 
UFSphys and UFSphys,bgc, as shown in Fig. 2, averaged 
over Weeks 2-4. Warm, red color indicates improvement 
in SST prediction skills after enabling ocean data 
assimilation and ocean biogeochemical modelling, while 
cool, blue color indicates skill deterioration. The global 
ocean is separated into 56 provinces for statistical 
analyses according to Longhurst (2007). 
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Information on the today's and future state of the sea surface, which is almost always disturbed to some extent by 

wind waves, is one of the most requested by numerous users of marine hydrometeorological information 

(navigation, rescue operations, marine fishing, obtaining mineral resources, environmental applications, and many 

others). The usual way for obtaining this kind of information are operational wind waves forecasting systems. 

For the purposes of such forecasting in the Hydrometeorological Center of Russia an integrated system is being 

developed. The system is configured according to the conjugate scheme “ocean – sea – coastal zone” within the 

framework of a unified technology, taking into account differences in the spatio-temporal scales of wave processes 

in oceanic and marine areas. Conjugation is accomplished by continuously exchanging information between 

different subdomains at the liquid boundaries of nested meshes. The system makes it possible to calculate wave 

parameters with a resolution of 10–20 km in the World Ocean and ~5 km in the Russian seas with a computing time 

acceptable for operational applications. 

The third generation spectral wave model WaveWatch III (WW3) version 6.07 (WW3DG, 2019) is used for 

computing the forecasts. The model, which is one of the three most known in forecasting applications (WAM, 

WW3, SWAN), is based on the numerical solution of the spectral equation of the wave energy balance or wave 

action.  

For the global ocean, the computational domain is constructed by combining a regular geographic grid at low and 

mid latitudes with near polar grids with a resolution close to the resolution of the geographic grid at its boundaries 

(Table 1). The combination of such grids is carried out using the IRI (irregular – regular – irregular) technology 

(Rogers and Linzell, 2018), which provides a relatively uniform spatial resolution (10–20 km) for the entire global 

area. Unlike the usual geographic grid over the entire global region, this configuration does not violate the grid 

isotropy at high latitudes. 

Table 1. Composite grid configurations for the joint calculation of wind waves in the World Ocean 

Grid ID Grid type Latitude range Resolution 

Number of 

nautical grid 

points 

nps10km stereographic 60 – 89 N ~10 km 152822 

reg12mn geographic 55 S – 65 N 0,2 (~20 km) 754030 

sps15km stereographic 50 – 80 S ~15 km 205425 

For the marginal seas, grid configurations with a higher spatial are used (Table 2). The lateral boundary conditions 

for these grids are generated in the course of solving the task for the global domain (Table 2). 

Detailing forecasts in the coastal zone (bays, straits, port waters, etc.) requires an even higher resolution, up to ~100 

m. This problem is solved by using conjugated unstructured (triangular) grids supported by the WW3 model. Use of

this way allows the grid structure to be adapted to the bathymetry and coastline configuration. The boundary 

conditions for such grids are generated by a submodel for the corresponding sea (Table 2) within the framework of 

the general scheme “sea–coastal zone”. 



Table 2. Grid configurations for wind waves forecasting in the Russian seas 

Region Grid ID Grid type Resolution 

Boundary 

conditions from 

the mesh 

5 day forecast 

computing 

time (min) 

Arctic Seas arc stereographic ~5 km reg12mn 20 

White Sea bel geographic ~1 km nps10km 12 

Baltic Sea balt geographic ~2 km reg12mn 10 

Bering Sea bering geographic ~5 km reg12mn 6 

Japan and Okhotsk Seas JapOhot geographic ~5 km reg12mn 6 

Black Sea, 

Sea of Azov, 

Kerch Strait. 

black 

azov 

kerch 

geographic 

geographic 

geographic 

~4 km 

~1 km 

~0,5 km 

— 

— 

— 

15 

Caspian Sea,  

Northern Caspian 

casp 

caspn 

geographic 

geographic 

~2 km 

~1 km 

— 

— 
18 

For setting boundary conditions on the sea surface, which are required for the wave model integration, the products 

of two global meteorological forecasting models, PLAV (Hydrometeorological Center of Russia) (Tolstykh et al., 

2019) and GFS (NCEP/NOAA), as well as of the national mesoscale forecasting system COSMO-Ru (Rivin et al., 

2019) are used. 

When using 574 computing cores, the calculations of the global wave forecast for 5 days in the configuration of 

Table 1 take approximately 18 minutes, and under the conditions of parallel calculation of forecasts for the seas 

(Table 2), the total time spent is about 40 minutes, which is acceptable for operational applications. Starting from 

November 1, 2022, the technology operates in an experimental quasi-operational mode. 
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