
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Section 10 
 
 
 
 
 
 

 

 Forecast verification: methods and studies. 
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Scale-separation methods are a class of spatial verification methods (Gilleland et al., 2010) which enable i) the 
comparison of the scale structure of gridded products, such as reanalyses, forecasts from numerical models, and 
gridded observations; ii) the assessment of bias, error and skill on different scales; and iii) the analysis of the scale 
dependency of forecast predictability. In this study we apply novel scale-separation diagnostics and introduce the 
Symmetric and Bounded Efficiency for the comparison of precipitation reanalyses with different spatial 
resolutions. The COSMO-REA6 reanalysis (6km resolution) is compared against the ERA5 reanalysis control 
member (HRES, 31km resolution) and 10 ensemble members (EDA, 62km resolution). 24-hour accumulated 
precipitation fields are decomposed into the sum of components on different spatial scales by using a 2D Haar 
wavelet filter. The separate scale components are then compared by using the continuous verification statistics 
listed in Table 1.  
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Table 1: scale-separation diagnostics, where X and Y indicate the gridded observation and forecast compared, 𝜇 
the mean, 𝜎 the standard deviation, r the correlation, following conventional statistical notation. 

The scale-separation diagnostics are illustrated in Figure 1. The energy (𝐸𝑛") and its square-root (𝐸𝑛, Fig.1a) are 
proportional to magnitude and number of precipitation features on each scale. Comparison of the energies 
informs on biases on different scales and on the scale structure. All products show that the dominant precipitation 
features have scales ranging between 200-400km. As expected, the COSMO-REA6 (in grey) has larger energy, much 
more small-to-medium scale features, than the ERA5 products. The ERA5 control member (in red) has slightly more 
small-scale details than the lower resolution ensemble members (in blue). The energies on the different scales are 
compared by the Normalized Bias (NB), which is the difference between the two energies divided by their sum. For 
the wavelet components (which have null spatial average 𝜇! = 0) the energy 𝐸𝑛!" 	is the variance 𝜎!", whereas for 
the largest scale component (which is a constant field with 𝜎!" = 0) the 𝐸𝑛! is the field spatial mean 𝜇!. Hence, 
the NB comparing square-root energies is the NB comparing the scale component standard deviations and the field 
spatial averages (Table 1). Normalized (and bounded) statistics facilitate the comparison and aggregation of 
verification results, e.g. for sites with different climatologies. The square-root energy NB is bounded (it ranges 
between -1 and 1) and symmetric (its absolute value does not change if we swap the two products compared): 
these two key properties enable the definition of the Symmetric and Bounded Efficiency.  

While assessing the Mean Squared Error (MSE) and correlation on different scales (Fig.1b,c), the correlation 
separates the performance of the ERA5 products, whereas the MSE does not. In fact, the MSE highly depends on 
the variability of the products compared, both observation and forecast variabilities (Table 1), so that higher 
resolution forecasts (which have higher variability) tend to be penalized more heavily with respect to 
coarser/smoother forecasts. The reduction of variance, also known as Nash Sutcliffe Efficiency (NSE), is the MSE 
skill score against sample climatology (MSEclim=	𝜎!"), and it was introduced to reduce the effect of the variability 
while assessing the forecast performance. However, the NSE compensates solely for the observed variability (the 
MSE is normalized by the observed variance only). Then, the MSE shortcoming when comparing forecasts with 



different resolutions is still not addressed by the NSE: the higher resolution/noisier forecast is still penalized more 
heavily compared to the coarser/smoother one, and also the NSE cannot separate the performance of the two 
ERA5 products (Fig.1d). The MSE skill score against random chance (SSrand, Table 1) normalizes the MSE by the 
variances of both observation and forecast products (the forecast variability is factored in), and is therefore 
capable of separating the performance of the ERA5 products (Fig.1e). The SSrand allows a fairer comparison of 
products with different resolutions and enables the assessment of the added value of increasing resolution.  

The Kling and Gupta Efficiency (KGE) combines in a single performance measure the comparison of forecast and 
observation variances and averages, and the two products correlation. The KGE also allows a fair comparison of 
forecasts with different resolutions, and is capable of separating the performance of the ERA5 products (Fig.8 of 
Casati et al., 2023). However, the KGE compares variances and averages by their ratio, which renders the KGE 
asymmetric and unbounded (the score can attain very large negative values e.g. when comparing a smooth 
forecast versus a noisy observation). The Symmetric and Bounded Efficiency (SBE) is then defined as the KGE, but 
the variances and averages are compared by the NB (Table 1). The SBE is then bounded and capable of separating 
the performance of the ERA5 products (Fig.1f). Both SSrand and SBE are symmetric, hence they are invariant with-
respect-to the definition of observation and forecast in the comparison of the two products, whereas NSE and KGE 
are not symmetric, and their values (as well as the no-skill to skill transition scale) change if the order of 
comparison of the two products is swapped. 

 

   

   

Figure 1: scale-separation diagnostics comparing the ERA5 products against COSMO-REA6. The shading shows the 
bootstrap 90% confidence intervals of the aggregated statistics on 50 intense precipitation case studies.  

The scale-separation diagnostics in Figure 1 consistently show that the reanalyses are in strong agreement on 
large scales, and exhibit weaker agreement on (less predictable) small scales. The stronger agreement of HRES with 
COSMO-REA6 (compared to EDA) is due to a more similar representation of the variability at small-to-medium 
scales, as well as a better linear dependence (correlation). On the largest scale, on the other hand, HRES is slightly 
underperforming EDA due to over-forecast bias. 
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Introduction 
Evaluation of high impact hydrometeorological features in numerical weather prediction is challenging, but 
critical to understand due to the potential hazards they present. Features with strong gradients over a short 
distance, such as narrow snow bands, are more susceptible to the ‘double penalty’ when using traditional 
verification metrics due to displacement and size errors. This paper will demonstrate innovative tools for 
evaluating snowband features using object-based methods. 
 

Software and Data 
The enhanced Model Evaluation Tools (METplus) is a state-of the-art verification and diagnostics 
framework that hosts a suite of traditional statistics and diagnostic methods for applications over a wide 
range of temporal and spatial scales (Brown et al. 2021). Of particular use in assessing snowband events, 
is the Method for Object-based Diagnostic Evaluation (MODE) tool in METplus, which is used to identify 
and compare coherent spatial features (Davis et al. 2006). Seven cases of heavy-banded snowfall events 
over the Northeast, often associated with Nor’Easters, were selected and include initializations on 
12/16/2020, 12/24/2020, 1/31/2021, 2/1/2021, 1/3/2022, 1/6/2022, and 1/16/2022. HRRR 1-hr forecast data 
was verified against the Multi Radar Multi Sensor (MRMS) product and the HRRR analysis. A masking 
region over the eastern quarter of the CONUS was applied in order to eliminate other snow events that may 
behave differently compared to the events of interest. 
 

METplus Methods 
Three novel METplus tools that enable object-based verification were used to evaluate snowband features 
including i) feature relative to diagnose systematic biases in the environment relative to the feature, ii) 
forecast consistency to provide a measure of forecast stability across cycles, and iii) multivariate MODE to 
identify and evaluate complex super objects from two or more input fields. 
 

a. Feature Relative 
The feature relative use-case utilized the seven cases initialized at 00 UTC to demonstrate the identification 
of systematic biases within the environment relative to the snowband features. The HRRR gridded forecast 
data was compared against the gridded MRMS accumulated precipitation and HRRR analysis for 
investigating various mechanisms that drive snowband behavior. This use-case was set up to use the 
following METplus tools, i) GenVxMask to mask the accumulated precipitation field using categorical 
snow and apply the east quarter mask, ii) MODE time domain (MTD) to identify and track the snowband 
events in time, iii) ExtractTiles to extract a tile relative to the snowband centroid, and iv) series analysis to 
accumulate statistics at each grid point separately within the extracted tile. Relevant configuration settings 
in MTD include a convolution threshold ≥0.05 inches precipitation, a convolution radius of 5 grid points 
(or 15 km), and a minimum volume of 1000 grid points. For ExtractTiles, a 30° x 30° tile with 0.25° grid 
spacing centered on the objects was extracted. Spatial mean error plots from series analysis are shown in 
figure 1. The aggregated biases are 2-3 mm in the 1-hour precipitation accumulations (fig. 1a), with a high 

 
Figure 1. Spatial mean error plots from series analysis of a) 1h accumulated precipitation (mm), and b) geopotential height (m), 
temperature (K), and relative humidity (%) at 700 mb. The '+' indicates the feature centroid. 

a) b) c) d) 



snowfall bias near the center and in the southeast quadrant. Geopotential heights in the mid-lower 
troposphere, such as at 700 mb (fig. 1b) and mean sea level pressure (not shown) show a low bias over the 
snowband centroid and downstream, which indicates the model low is too strong and too slow for these 
events. At 700 mb, the environment is too cold to the north and too warm to the south of the centroid (fig. 
1c) and generally too moist (fig. 1d). 
 

b. Forecast Consistency 
For forecast consistency, the HRRR 1-hr forecasts were used for the 16 December 2020 snowband case. 1-
hr cycles from 12/16/2020 12 UTC to 12/17/2020 06 UTC were used for measuring forecast stability as the 
event neared. This use-case first runs GenVxMask to mask the data using categorical snow and then applies 

the east quarter mask to focus on snowbands in the northeast. 
MTD is then run in reverse, starting with the longest lead time to 
the shortest, while keeping valid hour constant and thresholding 
accumulated precipitation ≥0.05” and a minimum volume of 
1000 grid points. The difference from one time to the next, or the 
revisions, can then be computed for various object attributes, such 
as area, intensity, or displacement. The revisions of object area at 
valid time 12/17/2020 06 UTC are plotted in figure 2, showing 
small changes, generally less than 600 grid points, throughout the 
series. Considering the large size of the object (not shown), these 
revisions are <1% of the object area so the object size is not 
changing drastically from one time to another, showing 
consistency in the forecast. 
 

c. Multivariate MODE 
The multivariate MODE use-case was applied to the 1 February 2021 snowband case, ingesting categorical 
snow and accumulated precipitation from the HRRR 1-h forecasts and MRMS. To identify and evaluate 
super objects in METplus, the use-case first runs multivariate MODE to identify the super objects where 
accumulated precipitation is identified as snow type. Then GenVxMask is used to apply the super object 
mask to the raw precipitation field, and finally MODE is run a second time on the masked field to provide 
attribute statistics. Figure 3 shows time series of object attributes, where it is observed that the forecast 
super objects are larger (fig. 3a), often more intense with respect to accumulated precipitation (fig. 3b), and 
have a north-east displacement (fig. 3c) compared to observations. 

 
Figure 3. Output from running the multivariate MODE use-case showing time series plots of a) object area and b) 90 percentile 
accumulated precipitation intensity for the HRRR forecast (blue) and MRMS (black), and centroid displacement in the W-E (red) 
and S-N (blue) direction, where positive values indicate a E/N displacement and negative values indicate a W/S displacement. 
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Introduction 
The METplus system is a suite of verification and diagnostic tools in a consistent framework that are designed 
to facilitate consistent computation of statistics and metrics across applications and institutions.  The highly 
configurable Python wrappers provide low-level workflow around the core Model Evaluation Tools (MET) 
package for computing verification statistics.  Additional components of METplus include an Analysis Suite 
made up of a data input-output library (METdataio), an aggregation and synthesis tool (METcalcpy), and 
plotting (METplotpy).  The tools are more fully discussed in Brown et. al (2021) and provide great flexibility 
to evaluate a range of numerical prediction across temporal scales, spatial scales, and model applications.  
To address the needs of a cadre of international research laboratories and operational centers, METplus is 
also being enhanced to provide systematic evaluation and diagnostics of many of the coupled components 
within an Earth system modeling framework. 
    

Temporal and Spatial Scales 
 METplus was designed to work like most other Linux/Unix based tools, with each component being focused 
on a small subset of capability to allow for maximum flexibility in setting up the tools.  Unless specifically 
designed to accept a time series of data, the tools focus on computing statistics for a give valid time and allow 
for aggregation of statistics, diagnostic attributes, or metrics, over the appropriate temporal scales for a 
model application. This allows the same tools to be used for evaluation of short-range (1-10 minute, hourly, 
daily), medium-range (3-14 days), sub-seasonal (weeks 2-4), seasonal (up to 9 months), and climate (yearly 
to multi-decadal) simulations. The capability includes the use of appropriate user-defined climatologies, 
thresholds, masking regions to define areas of interest, and interpolation methods. 
 

Applications 
The applications METplus has been applied to vary from evaluation forecasts for renewable energy, fire 
weather, severe weather, extremes, marine (standard variables as well as phenomena like chlorophyll), 
cryosphere, extra-tropical and tropical cyclones, monsoons, droughts, clouds, dust, aerosols, air quality fields, 
satellite brightness temperatures, land modeling diagnostics, and ionospheric fields for space weather.  The 
tools are used in both research and operations.  Current operational partners include the National Oceanic 
and Atmospheric Administration (NOAA) National Center for Environmental Prediction (NCEP) Centers, the 
United States Air Force, the Met Office for the United Kingdom, the Australian Bureau of Meteorology, the 
Indian National Center for Medium Range Weather Forecasting, and many of the other associated Unified 
Model partnership.  Additionally, METplus is being adopted by US Naval Research Laboratory and US Army 
Research Laboratory, and the United Arab Emirates National Center for Meteorology.  
 

Current and Future Capability 
In METplus v5.1, released June 2023, there is support for over 150 traditional statistics and diagnostics 
methods.  Table 1 provides a synopsis of what is included in the METplus framework.  Future work is focused 
on optimizing the use of memory, adding support for parallelized computing and unstructured grids, 
developing database applications to store large quantities of forecast-observation matched pairs for analysis, 
and including more diagnostics for non-atmospheric components of an Earth system model.  
 



Traditional 
Grid-Stat, Point-Stat, Series-Analysis 

Contingency table (CTS), Continuous, Probability 
forecast statistics, SEEPS 

Ensemble-Stat 
CRPS, CRPSS, Rank probability, Prob. Integral 

Transform, and Relative position histograms, 
Spread/Skill, Ignorance 

Spatial 
MODE 

Location and Geometric attribute differences, 
Intersection area, Intensity distributions,  

CTS measures for objects,  
**Available for single and multi-variate fields 

MODE-Time Domain 
Time and location differences, Volume and Velocity 

differences, Intersection volume, 
Intensity distributions and differences 

Wavelet-Stat 
Mean Square Error by scale, Energy by scale, 

Intensity-scale skill score 

Grid-Stat and Point-Stat 
Fraction Skill Score, High Resolution Analysis, 

Distance Measures, Mean Error Distance, 
Baddeley, Hausdorff, Zhu, Fourier Decomposition 

Diagnostics 
Grid-Diag 

Distribution of fields to assess multivariate 
relationships between fields 

Feature Relative 
Used to assess presence of systematic errors 

associated with features or events 
Physics Tendencies 

Computation of Physics tendencies (vertical cross section and plan-view) 
Tropical Cyclones Application 

TC-Pairs, TC-Stat, TC-Dland 
Track error (along, cross, total), Intensity (pressure, 
wind), Rapid Intensification/weakening errors, CTS 

measures for TC genesis 

TC-Gen 
CTS measures for TC genesis, Spatial 

representation of  TC genesis density function, TC 
density function  

TC-RMW 
Errors and diagnostics in Radius of maximum wind 

projection 

TC-Diag 
Errors and diagnostics in  

S2S Application 
Realtime Multivariate Madden Julien Oscillation (MJO) Index (RMM) 1, RMM2, Outgoing Longwave 

Radiation (OLR) MJO Index, MJO-El Nino Southern Oscillation (ENSO) Index 
Identification of Weather Regimes and Blocking Regimes, Hovmoeller Diagrams, Zonal and Meridional 

Means, Empirical Orthogonal Functions (EOFs), Space-Time Coherence (or Cross-Spectra) Plots 
Statistical Synthesis Tools 

Scorecards, Contour Plots Performance Diagrams, Taylor Diagrams 
Table 1. High level summary of traditional statistics, spatial methods and model diagnostics, and Tropical Cyclone 
application support.  MET Tool names are in blue with capability listed in black.  
 

Summary 
METplus is a state-of-the-science community verification and diagnostic package that is used by over 3,000 
US and international institutions spanning the public, private, and academic sectors. It provides the Earth 
system modeling research community with the ability to share, and hence, standardize evaluation across 
entities. More information can be found at: dtcenter.org/community-code/metplus    
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Introduction 
The METplus system is a suite of verification and diagnostic tools in a consistent framework that are designed 
to facilitate quick setup.  METplus contains several components, but at its core is the Model Evaluation Tools 
(MET) package for computing verification statistics.  Additional components of METplus include METcalcpy, 
which contains python calculations of statistics and other indices and metrics, and METplotpy for creating 
graphics and displaying statistics.  Recently, a set of process-oriented diagnostic and verification metrics have 
been added to the METplus system to examine the predictability of phenomena on subseasonal to seasonal 
time scales.  The METplus GitHub repository (https://github.com/dtcenter/METplus) includes use cases, 
where users can change configuration settings to run the computations on different datasets. Here we will 
focus on four of these metrics, which fall into two categories, mid latitude weather and indices associated 
with the Madden Julian Oscillation (MJO). 

Mid Latitude Metrics 
There are two calculations added to METplus to evaluate different mid latitude weather events, atmospheric 
blocking and weather regimes.  The weather regime classification begins by computing the optimal number 
of regimes using the sum of squared distances.  From there, weather regime patterns and their frequency of 
occurrence are computed using K-means clustering.  This clustering can be performed on the 500 hPa height 
data, or on reconstructed empirical orthogonal functions.  Additionally, the frequency of occurrence of each 
classified weather regime can be computed over a user defined time period.  Figure 1 shows the patterns of 
the first two weather regimes for the European Center for Medium Range Forecast Re-Analysis (ERA - top) 
and Global Forecast System (GFS - bottom).  In total, there were six classified weather regimes.  Output 
statistics can be performed on the classification and time frequency of regimes.  Multi-category contingency 
table statistics computed on these classified weather regimes include a Heidke Skill Score (HSS) of 0.593, and 
a Hanssen-Kuipers Discriminant (HK) of 0.598. 

 
Figure 1.  The first four weather regime patterns classified for the ERA (left) and GFS model (right).  The frequency of each weather 
regime is given in parentheses. 

The second mid latitude calculation, atmospheric blocking, uses approaches in both Pelly and Hoskins and 
Tibaldi and Molteni methods (Barnes et al, 2012).  Specifically, atmospheric blocking events are identified by 
first locating reversals in the 500 hPa geopotential height gradient as blocked longitudes.  This is followed by 
applying spatial and temporal thresholds to ensure the large-scale, quasi-stationary characteristics of 

https://github.com/dtcenter/METplus


blocking anticyclones are met.  Some of the default characteristics are that a block must persist for at least 5 
days and not travel more than 45 degrees downstream, although these options can be modified (Miller and 
Wang, 2019 and 2022).     

MJO Indices 
The two new MJO metrics that have been added to METplus include the Real-Time Multivariate MJO (RMM) 
Index and OLR-based MJO Index (OMI). Similar to the mid latitude calculations, these use ERA and GFS for 
the observations and model, however only graphics are output.  The RMM is computed using latitudinal 
averages of outgoing longwave radiation (OLR), 850 hPa zonal winds, and 200 hPa zonal winds.  The 
calculation follows Wheeler and Hendon 2004, and includes removal of the 120 day mean, regressing data 
onto the EOF patterns, and normalizing the principal components by the standard deviation.  Figure 2 shows 
the phase diagram, RMM 1 and RMM 2 for 2022, and EOF1 for each variable from the RMM calculation. 

 
Figure 2.  A phase diagram (left), RMM  principal components 1 and 2 over 2022 (right, top), and the EOFs for all three variables (right, 
bottom).  

The OMI computation is similar to RMM, but uses only outgoing longwave radiation.   The first step is filtering 
to retain the frequencies associated with the MJO, which is set to be 29 – 90 days.  Then, the OLR is projected 
on to the daily EOF patterns, and the principal components are normalized.  Output from the OMI use case 
includes a phase diagram for both the model and observations which are like the one seen in Figure 2.  

Summary 
Many new process-oriented metrics have been added to the METplus system to examine the predictability 
of phenomena on subseasonal to seasonal time scales.  These metrics include calculations of indices, output 
statistics, and graphics.  The four metrics discussed here, along with all others, are designed to be flexible 
enough to use with different model and observation datasets, as well as user configurable options.   
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METplus is a forecast verification system [McCabe, G. et al. 2022] with MET (Model Evaluation Tools) 

[Newman et al. 2022] as a core developed and supported to community via the Developmental Testbed 

Center (DTC) (https://dtcenter.org/community-code/metplus). It was decided to implement METplus at the 

Hydrometcentre of Russia because of its flexibility, availability of most necessary methods in one package, 

and a good support by developers via the forum. METplus with the tools for visualization of the forecast 

scores has been installed at the Hydrometcentre of Russia and applied to verify mesoscale high-resolution 

forecasts by the COSMO-Ru system [Rivin et al., 2015]. Figure 1 shows the operational COSMO-Ru model 

domains, for which the scores are calculated at present. The scores are also calculated in the experimental 

mode for ICON-Ru system. The plots are prepared in the METviewer package. It proved to be a convenient 

visualization tool. The synoptic station data are used as a reference. 

 

Figure 1. Configuration of the operational COSMO-Ru system [Rivin et al. 2015]. Blue is COSMO-Ru6ENA 

domain (grid step in horizontal 6.6 km), green is COSMO-Ru2By domain (grid step in horizontal 2.2 km), red is 

COSMO-Ru1Mr (grid step in horizontal 1 km) 

Figure 2 shows how the diurnal cycle of the 2m temperature (T2m) mean error (ME) changes depending 

on the start time of the COSMO-Ru2By model with a 2.2 km grid step (green contour in Fig. 1). The score 

is aggregated over European Russia (the whole model domain) and over all lead times up to 24 h.  Figure 

2 demonstrates that the diurnal amplitude of the T2m changes is underestimated except for 18 UTC run, 

which overestimates T2m during almost the whole day. The 00 UTC runs have the smallest bias except for 

the evening hours. 

Figure 3 shows the box plots of the wind gusts in COSMO-Ru2By and observations together with the ME 

and MAE of the wind gusts. It is a useful approach for comparing the distribution of the variable values 

and the errors. The model and observed values of wind gusts are in good agreement, and the ME is close to 

zero, although there are some outliers.  

           

Figure 2. The mean error ME of the air temperature 

at 2 m (°C) for 00, 06, 12, and 18 UTC runs, 

COSMO-Ru2By, European Russia, spring 2023.  

Figure 3. Forecast and observed wind gusts at 10 m 

(m/s), COSMO-Ru2By, European Russia,  

MAM 2023, 00 UTC run. 



 

In Figure 4, precipitation performance diagrams are shown for summer 2022 (Fig. 4a) and spring 2023 (Fig. 

4b). In summer 2022, COSMO-Ru6ENA overestimated precipitation exceeding low thresholds (0.1 and 1 

mm/12h) and underestimated intense precipitation. Overall, the intense precipitation is forecasted worse 

than precipitation exceeding lower thresholds. There are similar conclusions for COSMO-Ru2By, spring 

2023, but the precipitation scores are better compared to COSMO-Ru6ENA, summer 2022. 

 

Figure 4. Performance diagrams of 12h precipitation accumulations exceeding different thresholds (0.1, 1, 5, and 10 

mm/12h), Central Russia, 15 h lead time, 00 UTC run, (a) COSMO-Ru6ENA, JJA 2022 and (b) COSMO-Ru2By, 

MAM 2023 

METplus is run to verify the test regional ensemble ICON-Ru2-EPS forecast based on the ICON-LAM 

model (2.2 km horizontal grid step) [Astakhova et al. 2021]. We also use METplus for neighborhood 

methods, object-based MODE method [Bundel et al. 2022], and for verifying the microphysical fields, such 

as the liquid water path using the MODIS satellite product as reference.  

Conclusions: METplus was chosen as a basic verification tool for the COSMO-Ru system at the 

Hydrometcenter of Russia. It proved to be a convenient and versatile tool and helped to identify several 

model flaws. We plan to further expand the range of verification methods in operation, including the spatial 

ones applied to high-resolution ensembles. The research applications explore using the non-standard fields 

for both model and observations. 
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