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The NOAA Global Ensemble Forecast System (GEFS) and Global Data Assimilation System (GDAS) 
ensembles have been continually growing in complexity in order to provide forecasters with more accurate 
probabilistic forecast guidance and improve data assimilation to produce accurate initial conditions. Its 
demands for HPC resources perpetually outrun the increase in available computational power. For example, 
the operational GEFS v12 at its peak uses nearly the entirety of the NOAA WCOSS Dell Phase 3.5 
supercomputer. Flexible and powerful numerical techniques are required to alleviate growing demands for 
HPC resources. The Neural network (NN) technique is increasingly being applied in NWP models to 
achieve this goal. NNs are used to accelerate calculations in NWP models and to develop faster and better 
constituents (parameterizations) of model physics at NOAA, ECMWF, UKMO, and other weather forecast 
centers. 

The Environmental Modeling Center (EMC) of NCEP has extensive pioneering experience with the 
successful development of AI/ML applications for global atmospheric modeling, specifically for earlier 
versions of NCEP GFS and CFS (Krasnopolsky et al. 2010), as well as NCAR CAM. Several of the most 
time-consuming parts of model physics, including short wave radiation (SWR) and long wave radiation 
(LWR) parameterizations, have been emulated with high accuracy using an advanced and universal ML 
NN technique. Table 1 illustrates the performance gains that have been achieved. The speed up does not 
significantly decrease with increasing vertical resolution of the model.  

Table 1 Speed up of LWR and SWR parameterizations achieved by using NN emulations in the NCAR CAM and 
NCEP CFS with different vertical resolutions (L). The presented numbers are for the 2010 versions of the models. 
Numbers in parentheses are speed-up factors for cloudy-sky conditions. 

We showed that a comparable improvement in performance can be achieved in the latest version of GFS 
which constitutes the core of the GEFS (Belochitski and Krasnopolsky 2021). To assess the potential speed 
up, in the pilot study we configured a modern version of the GFS to run at the C384L64 (~25 km) 
configuration, the operational resolution of GEFS v12, and replaced the modern radiative transfer 
parameterizations (RRTMG) with their shallow NN-based emulators developed for this GFS. Table 2 
shows an overall 23% speed up of the model, a result that is to a substantial degree due to an almost an 
order of magnitude acceleration of radiative transfer calculations.  

NCAR CAM (L=26) NCEP CFS (L=64) 

LWR SWR RRTMG LWR RRTMG SWR 

Speed up, times 150 20 16 (20) 60 (88) 

Speed up due to using NN emulator of radiation, times 

Total 1.23 

Radiation 9 

Dynamical core 1.10 



Table 2 Speed up of GFS model components due to the NN emulator of radiative transfer parameterizations in GFS 
pre-v16 at the GEFS operational resolution of C384L64. 

An additional speed up stems from the fact that NN emulations provide a uniform computational efficiency 
across different atmospheric conditions, while the performance of the original physical parameterizations 
usually depends significantly on the local atmospheric state. For example, radiative transfer 
parameterizations take longer to complete their calculations under cloudy conditions, while performance of 
the NN emulation is invariant with respect to its inputs; therefore, NN emulations provide improved 
balancing and reduced idle time in an HPC parallel environment, as illustrated by the speed up of the 
dynamical core in Table 2.  Such a speed up will allow us to increase the number of GEFS ensemble 
members from 30 to 38 and in GDAS from 80 to 98 without an increase in the amount of required 
computational resources.  

Figure 1 illustrates accuracy of the NN emulators over a 10-day forecast. The development methodology 
for all stages of an NN-based emulation of the model physics components has been worked out and 
successfully tested. This methodology will be used in the current work with GEFS and GDAS. In a recent 
pilot study, we demonstrated that a single NN can accurately emulate both the LW and SW radiation 
parameterizations (RRTMG) in the new FV3 GFS. This development will provide an additional speed up 
in the calculation of atmospheric radiation. 

NN emulators developed using the training software developed at NCEP are FORTRAN modules that are 
specifically designed for and are completely compatible with the NCEP’s developmental and operational 
HPC environments.  

Figure 1 Results of parallel runs of GFS C384L64: time average over 10-day forecast. LWR heating rates (left 
column), and outgoing long wave radiation flux (right column). Upper row – results produced by NGFS (GFS with 
NN emulations of radiation parameterizations), medium – by GFS control (CTL) run, and the lower row the difference 
(NGFS – GFS). Vertical coordinate shows model level number.  
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When processing satellite information about 

various geophysical fields, it may be necessary to 

convert the fields of values averaged by pixels by 

satellite device into fields of local values on the output 

geographical grid. Sometimes it is necessary to inverse 

the transformation of the local values on the grid into a 

set of pixel integrals. Compact finite-difference 

schemes provide a higher accuracy order than classical 

explicit algorithms. In order to convert one type of 

field into another, it is sufficient to solve a system of 

linear algebraic equations (SLAE) with a sparse 

matrix. The transformations are not exact for an 

arbitrary field, and lead to errors that depend on the 

grid step and the wave spectrum of the interpolated 

fields. These errors for different algorithms are 

compared using the Fourier analysis. The comparison 

confirms the advantage of compact algorithms for a 

wide spectral range of waves. The advantage of the 

compact algorithms is also observed for Gaussian 

formulas, but in some special way. The grid knots for 

such formulae are not equidistantly spaced. Additional 

difficulties in converting one type of field to another 

exist in the vicinity of the boundary of the 

computational domain V. Modification of these 

algorithms is necessary here. For many geophysical 

problems, the spectral energy distribution of the 

interpolated fields is known a priori if these fields are 

interpreted as random. It is useful to apply this a priori 

information for interpolation to minimize the 

probabilistic error for a given type of field. Compact 

finite-difference schemes for these problems also 

provide minimal error. 

Let's divide the area V into small squares 

(pixels) with a side h. Let N be the number of pixels at 

each coordinate. We use as input data the pixel-

averaged values  of a function u(x,y) (e.g. temperature) 
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We consider for the evaluation the nine-point 

stencils for both fields for creating a compact scheme.  

Let's shift the origin to the center of the square with 

coordinates <j,k> and use symmetry, with respect to 

the coordinate axes, and with respect to the diagonals:        
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            Let us determine 5 coefficients: a, b, c, p, q. 

We will assume that Eq. (2) is fulfilled on the 

monomial functions: 
2 4 2 21, , ,u x x x y  etc. To 

ensure the 4-th order of accuracy (in reality, the 5th 

due to the symmetry of scheme (2)), we need to use 

these 4 test functions, and to improve the order up to 

the 6-th we need to add 
6 4 2,x x y . However, 5 

coefficients in (2) are not sufficient for the goal, and 

we must limit ourselves to the 4th order. We obtain by 

substitution into compact relation (2) the following 

SLAE: 
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 To determine the local values of the function 

u(x,y) by their mean values we need “global” SLAE 

(2). Its order is equal to the number of the grid knots. 

We need to modify equations (2) near the boundary of 

V.  

 

Fig.1. The weights for integrals by pixels and the 

coefficients for the values in knots in relation (2) 

 In each row of the matrix there is one element 

equal to 1, 4 elements with the value p and 4 with the 

value q. The remaining elements of the row are zero. If 



p or q is also zero, then the matrix is sparser and it will 

be cheaper to solve SLAE (2). We obtain from “local” 

SLAE (3) the coefficients for “global” SLAE (2) for 

the normalization q=0:  
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The inequality 4 | | 1p   is fulfilled, and 

therefore (according to the Gershgorin theorem) the 

principal diagonal of the matrix dominates and the 

matrix of SLAE (2) is non-degenerate (if the boundary 

condition for the problem is suitable).

 

Fig.2. Solid line - symbol of the reference functional; 

dotted line - compact approximation for c=0; dashed 

line – for q=0. All the symbols are shown on the 

diagonal, i.e. when   . 

            Vice versa, if we determine the set of the 

integrals  ,j kI , by the local values of the function, the 

normalization с=0 is preferable. We obtain the solution 

of SLAE (3): 
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The principal diagonal is dominant again, 

since |a|>|b| here. The matrix of SLAE (2) is non-

degenerate (if the boundary condition for the problem 

is suitable). The plots in Fig.2 confirm the high quality 

of the compact approximation for a wide wave range. 

The naive approximations (the integral is proportional 

to the average value of the function in the corners of 

the square):
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where    2 25 / 3 , 1/ 6h h    .   The 

corresponding symbols are shown in Fig.3, where the 

differences with the reference solution are much 

greater than in Fig.2. 

  

Fig.3. Symbols for the naive formulae. Solid line – 

ibid, dash dotted line – for formula (4), dashed line – 

for formula (5). 

 Thus, the compact formulae for the problems 

are much more accurate. The additional computation 

(the sparse matrix inversion) is not expensive.  
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1. Introduction 
The Japan Meteorological Agency (JMA) 

places high priority on improving accuracy in 
numerical weather prediction (NWP) for heavy 
rainfall. 

Water vapor advection from seas in the lower 
atmosphere sometimes causes heavy rainfall, 
and NWP accuracy of heavy rainfall depends in 
good part on the precision of related fields as an 
initial condition. Although data assimilation is 
effective in improving initial field accuracy, 
water vapor observation networks for sea areas 
are not sufficient as those over land.  

Ikuta et al. (2022) described improved 
prediction of heavy rainfall via assimilation of 
shipborne GNSS-derived precipitable water 
vapor (PWV) data (Shoji et al. 2017). Real-time 
PWV data from meteorological observation 
vessels for targeted areas and times also support 
operational NWP accuracy. 

Against this background, JMA began 
assimilating shipborne PWV data in its 
mesoscale NWP system on August 31 2021. This 
report gives an overview of related experiments. 

2. Shipborne PWV data and quality control 
Shipborne PWVs are provided from two JMA 

observation vessels and four Japan Coast Guard 
vessels (as of March 2021) in near-real time. 

 Ground-based PWVs derived from the GNSS 
Earth Observation Network System (GEONET) 
of Geospatial Information Authority of Japan 
(analyzed from observation on the same 
principle as shipborne PWVs) have been used in 
mesoscale analysis since 2009 (Ishikawa 2010). 
Accordingly, equivalent quality control and data 
thinning are used for shipborne PWV data. 

3. Assimilation experiments 
Observing system experiments were 

conducted to evaluate the effects of shipborne 
PWV data assimilation on mesoscale analysis 
and forecasting. The control experiment (CNTL) 
had the same configuration as the operational 
JMA mesoscale NWP system as of May 2021, 
and the test experiment (TEST) was the same as 
CNTL except for the assimilation of shipborne 
PWVs. The experiments covered the period from 

June 1 to July 15 2021, which included several 
heavy rainfall events. 

4. Shipborne PWV data quality 
Figure 1 shows observation-minus-

background (O-B) histograms of ground-based 
and shipborne PWVs. Table 1 presents mean 
and standard deviations of O-B and data counts 
of PWVs observed during the experimental 
period. The mean O-B of shipborne PWVs is 
slightly negative, while its absolute value is 
around the same as that of ground-based PWVs 
(approx. 10  mm). In Fig. 2’s time sequence of 
shipborne PWV observation values, outliers are 
appropriately removed in gross error data 
rejection and other quality control processes. 

5. Effects on analysis and forecasting 
 Several improved rainfall forecast cases 

were seen in TEST, as exemplified in the 
precipitation distribution of Fig. 3. Here, the 
initial condition water vapor field shows clear 
changes from assimilation of shipborne PWVs. 
The gradient PWV field gradient in the initial 
TEST condition is steeper near the shipborne 
PWV observation location (Fig. 4). Similar 
initial condition changes are seen in other 
improvements. 

4. Summary 
Shipborne PWV data quality is comparable to 

that of ground-based PWV data, and improved 
precipitation prediction from assimilation was 
observed. Excessive data rejection in quality 
control was seen in some cases, generally when 
there was a large discrepancy between the 
observed PWV and the NWP model’s first-guess 
PWV. Further investigation on shipborne PWV 
usage and development for more appropriate 
quality control procedure are necessary toward 
the effective use of PWV data. 
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Table 1. Shipborne and ground-based PWV: observations, mean 
values and standard deviations (Std) of O-B.  

 
 

 
 
Figure 1. O-B histograms of (a) ground-based and (b) shipborne 
PWVs (blue: all data; orange: quality-controlled) 

 

 
 

Figure 2. Ship-borne PWVs observed by JMA’s Ryofu-maru 
vessel from 17 June to 25 June 2021 (black: background; blue: 
quality-controlled: red: rejected in quality control).  

 
 

 
Figure 3. 3-hour accumulated precipitation at 09 UTC on June 
3 2021. (a) TEST (9-hour forecast range), (b) CNTL (9-hour 
forecast range) (c) Radar rain-gauge analyzed precipitation. 
 

 
 
Figure 4. PWV in initial conditions at 00 UTC on June 3 2021. 
(a) TEST, (b) CNTL, (c) TEST-CNTL. Units are mm. 
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1. Introduction 
The Japan Meteorological Agency (JMA) utilizes 

meteorological data collected by commercial aircraft for 

assimilation into its global NWP system (GSM), and 

previously introduced correction for biases known to 

exist in such data (Ballish et al. 2008) for appropriate 

application (Sako 2010). Here, bias correction values 

were created and updated once a month using statistics 

from the previous month on the temperature first-guess 

departure from JMA’s global data assimilation system. 

This was done separately for each aircraft and each 

vertical level, and bias correction values were used to 

correct aircraft temperature data for the next month. 

However, this approach was problematic from the 

perspective of effective use of aircraft temperature 

observations. For instance, update frequency was 

insufficient and aircraft temperature data were used 

without bias correction if there were insufficient data to 

enable calculation of correction values. Accordingly, a 

new bias correction method designed to solve these 

problems was implemented into operation after 

determination of its effectiveness with the GSM. 

 

2. New bias correction 
Other NWP centers use variational correction to 

correct aircraft temperature bias (Zhu et al. 2015). As 

this exerts a high computational cost on JMA’s NWP 

system, Kalman filtering is applied for correction at 

much lower cost. Bias correction values are updated at 

each analysis time (0000, 0600, 1200, 1800 UTC) and 

calculated for processing independent of analysis using 

a covariance of the first-guess departure separately for 

each aircraft, each vertical level and each flight phase 

(ascent, cruising and descent). Kalman filtering 

involves prediction and updating. In the prediction step, 

the estimated bias correction value �̂�, the covariance 𝐏 

and the covariance of the first-guess departure 𝐃  are 

developed from time 𝑘 − 1 to time 𝑘 as follows: 

�̂�−(𝑘) = �̂�(𝑘 − 1)                                            (1) 

𝐏−(𝑘) = 𝐏(𝑘 − 1) + 𝐔                                     (2) 

𝐃−(𝑘) = 𝐃(𝑘 − 1)                                            (3) 

The superscript “−” represents a priori estimation, 

and 𝐔 is equivalent to the covariance of system noise. 

Subsequently, �̂�, 𝐏 and 𝐃 are updated using the average 

first-guess departure 𝐛  for each analysis at the update 

step. The relevant formulas are shown below. 

�̂�(𝑘) = �̂�−(𝑘) + 𝐆 (𝐛(𝑘) − �̂�−(𝑘))             (4) 

𝐏(𝑘) = (𝐈 − 𝐆)𝐏−(𝑘)                                    (5) 

𝐃(𝑘) = 𝑟𝐃−(𝑘) + (1 − 𝑟)[𝐛(𝑘) − �̂�−(𝑘)]
2
 (6) 

                    𝐆 =
𝐏−(𝑘)

𝐏−(𝑘) + 𝐃(𝑘)
                                     (7) 

Here,  𝐆  is the Kalman gain, 𝑟  is the update ratio 

for 𝐃, and 𝐔 and 𝑟 are unique values based on pre-runs 

of the new bias correction method. Evaluation using 

past observation and GSM data indicated that the new 

method enables calculation of more suitable bias 

correction values than the conventional approach 

(Figure 1). 

 

3. Verification and results 
To verify the influence of the new bias correction on 

the GSM, observing system experiments were 

performed as per the operational GSM on August 27 

2020 (CNTL) and with the new bias correction method 

(TEST) for the experimental periods of August 2019 

and January 2020. Initial bias correction values for 

TEST were created via Kalman filtering for the previous 

two years using first-guess departures. 

The results indicated highly appropriate correction 

of aircraft temperature biases against first guesses with 

the new approach (Figure 2). Figure 3 (left) also shows 

that biases of aircraft temperature against first guesses 

were reduced. Biases of first-guess temperature against 

radiosonde observations were also reduced, especially 

around 250 hPa (Figure 3, right). Focusing on horizontal 

temperature distribution averaged over the experimental 

period, the temperature analysis field around 250 hPa in 

TEST was globally cooler than in CNTL (Figure 4). In 

terms of forecast accuracy, root mean squared errors of 

temperature and geopotential height against 

radiosondes and analysis were reduced in comparison 

with CNTL (Figure 5). The experimental results were 

consistent for both August 2019 and January 2020, and 

tropical cyclone track forecast error statistics were 

similar between TEST and CNTL. However, track 

forecast errors were improved for some tropical 

cyclones. These improvements are attributable to 

improved forecast accuracy of geopotential height in 

TEST.  

As the new bias correction method demonstrated 

better performance than the conventional approach, it 

was implemented into JMA’s global NWP system in 

June 2021. 
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Figure 1. Time-series representation of bias correction values (red) for 
aircraft observation temperatures at around 200 hPa from July 10, 2017 

to July 9, 2019. The top and bottom figures show values calculated using 
the conventional and new methods, respectively. The black line 

represents averaged first-guess departures at each analysis time. The unit 

is K. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Time-series representation of first-guess departures of 

temperature [K] in aircraft observation around 200 hPa in August 2019. 

The green line represents first-guess departures at each analysis time, 

and the red line shows values averaged over the experimental period. 

The top and bottom figures show CNTL and TEST, respectively. 

 

 

 

 

 

 

 

 

 

 
Figure 3. Temperature bias [K] in aircraft (left) and radiosonde (right) 

data against first guesses (dashed line) and analysis (solid line) at each 

vertical level for CNTL (black) and TEST (red) in August 2019. These 
biases were calculated only with data used in assimilation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Average difference of horizontal temperature distribution at 200 

hPa for the experimental period in August 2019 (only 1200 UTC) 
between TEST and CNTL. The zonal mean is also shown on the right. 

The unit is K. 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

 

 

 
Figure 5. Differences in root mean square errors between TEST and 
CNTL against radiosondes averaged over the experimental period at 

each vertical level in the Northern Hemisphere in August 2019. The top 

and bottom figures show temperature [K] and geopotential height [m] 
forecasts, respectively, and colors represent each forecast time. The 

yellow area represents improvement because of reduced root mean 

square errors. 
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1. Introduction 

Atmospheric Motion Vectors (AMVs) derived 
from geostationary meteorological satellites 
provide valuable information on tropospheric 
wind in the tropics and at mid-latitudes, and are 
used in data assimilation for JMA’s global NWP 
system (GSM). GOES-17 is the second of the 
third-generation GOES series of satellites 
equipped with Advanced Baseline Imagers 
(ABIs), and began operation as GOES West at 
137.2°W in Feb. 2019. GOES-16 is the same type 
of satellite, and is operated as GOES East at 
75.2°W. GOES-16 AMVs have been 
operationally assimilated in the GSM since 29 
July 2020 (Nonaka and Koyamatsu 2021). 

This report presents the results of 
comparison between GOES-16 AMV and GOES-
17 AMV data and related impacts on observing 
system experiments (OSEs) with GSM. 

2. Comparison of GOES-16 and 17 AMVs 
GOES-16 and 17 AMVs are derived from ABI 

sequential imagery using the same algorithm 
(Daniels et al. 2019), and their qualities are 
considered essentially comparable. The GOES-
17 ABI has issues with its cooling system, and 
some degradation is observed in its infrared 
channel imagery over a period of several hours 
before and after the vernal and autumnal 
equinoxes (GOES-17 ABI Performance, n.d.). To 
determine the effects of the cooling issues on the 
quality of GOES-17 AMVs, the difference 
between these AMVs and those of GOES-16 was 
evaluated by comparing values collocated within 
0.05-degree grid boxes. 

Figure 1 shows statistical differences 
between GOES-16 and 17 infrared-channel (3.9 
and 11.2 µm) AMVs (GOES-17 minus GOES-16) 
for speed and height every hour from 11 
November 2019 to 25 October 2020. Although 
speed differences are relatively small, GOES-17 
AMVs exhibited low height biases against 
GOES-16 AMVs for several hours a day during 
the period of approximately four months before 
and after the vernal and autumnal equinoxes at 
around 11 – 16 UTC in Feb., Apr., Aug. and Oct. 
The periods and hours during which GOES-17 
AMVs exhibited height biases against GOES-16 
AMVs correspond to those during which 

degradation is expected in GOES-17 ABI 
imagery. These results prompted avoidance of 
GOES-17 AMV data usage in the GSM for 
unreliable hours (11 to 16 UTC throughout the 
year). This is referred to here as time screening. 

3. Optimization of QI threshold values 
GOES-16 and 17 AMV data include a quality 

indicator without forecast testing (QI) 
(Holmlund 1998) which is used for data selection 
at major NWP centers. QI threshold values for 
both sets of AMVs were determined to reduce 
the bias and the standard deviation of 
observation minus background (O-B) statistics 
for the period from 10 July to 11 September 2020 
using GSM as the background. Figure 2 shows 
typical QI dependency of O-B statistics for u-
component of upper-layer (< 400 hPa) GOES-16 
and 17 AMVs in the tropics (20°S –20°N). The 
bias and standard deviation tend to decrease as 
QI values increase. 

4. Assimilation experiments 
OSEs were performed with application of 

time screening to GOES-17 AMVs and new QI 
threshold values to both GOES-16 and 17 AMVs 
to determine impacts of assimilating GOES-17 
AMV data on GSM. The experiments were based 
on an environment equivalent to that of JMA’s 
operational system for September 2020, and 
were verified over one month around August 
2020.  

Figure 3 shows the zonal mean of relative 
improvement in root mean square errors 
(RMSEs) of wind vectors for 24-hour forecasts 
from 12 UTC initials using ERA5 data as a 
reference. Figures 3 (a) and (b) show results of 
applying a low QI threshold (QI > 60), and (b) 
shows those of applying time screening in 
addition. Figure 3 (c) shows results of applying a 
constant high QI threshold (QI > 87). It can be 
seen that the high QI threshold and time 
screening are effective in improving short-term 
wind forecast fields, especially in the 
troposphere from the tropics to the Southern 
Hemisphere. 

5. Summary 
Positive impacts were observed on analysis 

and short-term forecast fields in the troposphere 



 

 

using GOES-17 AMVs in the GSM with 
application of time screening and the new 
optimal QI thresholds for GOES-16 and 17 
AMVs. GOES-17 AMVs have been used 
operationally with the GSM since 29 June 2021. 
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Figure 1. Time-series representation of statistical differences 
between GOES-16 and 17 infrared-channel AMVs every hour 
from 11 Nov. 2019 to 25 Oct. 2020. (a) Number of collocation 
vectors, (b) assignment height (pressure, hPa) difference 
(GOES-17 – GOES-16) and (c) speed difference (m/s) (GOES-
17 – GOES-16). The horizontal and vertical axes represent the 
month and time (UTC), respectively. 

 
Figure 2. QI dependency of O-B bias, standard deviation and 
root mean square difference (RMSD) for upper-layer u-
component wind in the tropics. (a) GOES-16 infrared–channel 
AMVs, and (b) GOES-17 infrared-channel AMVs. The red, 
green, blue and magenta lines indicate number of samples, 
bias, standard deviation and RMSD, respectively. 

 

 
Figure 3. Zonal mean of relative improvement in root mean 
square error (RMSE) of wind vectors for 24-hour forecasts from 
12 UTC initial against ERA5. The QI thresholds applied for 
GOES-16 and 17 AMVs are (a), (b) QI > 60 and (c) QI > 87. In 
(b) and (c), time screening is applied to GOES-17 AMVs. 
Negative values indicate reduced RMSEs from those of the 
reference experiment. Hatched areas represent statistically 
significant changes. The validation period is 1 – 31 August 
2020. 
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1.  Multigrid beta filter 

A new technique for modeling of background error covariance, the Multigrid Beta Filter (MGBF), is under development at 
the Environmental Modeling Center - EMC (Purser et al. 2022). The new technique approximates a Gaussian using the Beta 
function with a finite support but achieves large spatial spread through the application of a multigrid technique. This 
combination results in a very efficient and easily parallelizable algorithm, which is expected to perform successfully on the 
large numbers of parallel processors of contemporary high-performance machines. In addition, the filter response can produce 
a large range of shapes of covariances, including those with negative side lobes, and even produce cross-correlations within 
the variational method, which was until now exclusive to ensemble-based methods.   

The MGBF comes in two main flavors: a radial filter and a line filter. While the radial filter spreads the filter response within 
an ellipse of influence around the initial delta impulse, the line filter, like the recursive filters used in data assimilation at 
EMC until now, spreads this response along the selected lines. In the 2D case, three stages of filtering are needed; in the 3D 
case, seven stages are needed, with only six active filters at any generic grid point. The number of stages corresponds to the 
number of degrees of freedom in a general symmetric “aspect” tensor which controls the shape of the filter. In the isotropic 
case, where the x and y components of the 2D aspect tensor are equal, the line filters need only be applied in two dimensions, 
which provides a fast, isotropic version of the filter.    

2.  Tests with a standalone version of MGBF 

A standalone version of the MGBF was developed to handle the same number of variables (six 3D and four 2D) as the 
recursive filter used in the GSI (EMC’s operational data assimilation system). It operates at the same resolution as the GSI: 
1792 x 1956 horizontal grid intervals and 50 vertical levels, but outside of the framework of the whole data assimilation 
system.  It can therefore more speedily facilitate new developments, and the testing of different flavors of the filter.  

Fig.1 shows the “speedup” achieved in a 2D+1D option of the radial and the line versions of the MGB filter, in a series of 
tests running on various constellations of processors (PEs), starting with 64 all the way up to 11264. Here, 2D+1D is a 
shorthand to describe the method where the 3D variables are filtered through the application of a horizontal 2D filter and a 
vertical 1D filter. Speedup is defined as inverse time – thus, on this graph, a higher value is better.  

 
Figure 1 Speedup of the 2D+1D radial and line filters in the standalone version of the MGBF. 

In this case, the line filter performs better up to about 2800 PEs, then the radial filter becomes faster thanks to the less frequent 
need to call the halo-exchange “side sending” subroutines. Development is already in progress for a new method which will 
group line filters into planar combinations to reduce the number of side-send halo exchanges and address this issue.  

In the case of fully anisotropic 3D MGB filtering, the line version is systematically superior to the radial (Fig. 2), but its 
speedup with the increasing number of PEs still cannot match that of the isotropic 2D+1D version.  

 
Figure 2 Speedup of the 3D radial and line filters in the standalone version of the MGBF. 
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Finally, we tested the “fast” isotropic version of the line filter (1D+1D+1D), which requires only two passes of the line filter 
horizontally (Fig. 3) and, as expected, it clearly has the best speedup rate. 

 
Figure 3 Speedup of the 1D+1D+1D line filter compared with the 2D+1D radial filter in the standalone version of the MGBF. 

Note that the performance of all tested versions of the filter keeps improving all the way to 11264 PEs.  A further increase in 
the number of PEs would require a substantial modification of the code to include halos over two rows of processors, which 
has not yet been done. 

3.  Tests with MGBF in GSI 

We tested the isotropic version of the MGB line filter against the recursive filter (RF) in the GSI, using two different 
resolutions for the filter grid for the multigrid generation. The first configuration used the resolution of the analysis grid, and 
the second had about 10% lower horizontal resolution. Results are summarized in Figs. 4 and 5. 

 
Figure 4 Times spent on filtering in runs of the GSI over various constellations of PEs.  The isotropic version of the line MGBF is run at two different 
resolutions. 

The isotropic version of the MGB line filter is about three times faster than the RF and scales much better (Fig. 4).    

 
Figure 5 Total times spent on filtering in runs of the GSI over various constellations of PEs.  The isotropic version of line MGBF is used, with two different 
resolutions. 

Yet, though the total time spent in the GSI on filtering (Fig. 5) is systematically at least 20-25% lower with the MGBF than 
with the RF, the MGBF alone is not sufficient to push down the overall execution time of the GSI for processor numbers over 
~600 PEs, presumably due to too many all-to-all communications and direct exchanges of data with disks. Therefore, some 
re-engineering of the GSI may be needed if we are to take full advantage of the new MGBF. 
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1 Introduction

In order to improve the accuracy of forecasting lo-
calized heavy rainfall around urban areas, it is im-
portant to effectively utilize high frequent and high
density surface observation data that have not been
used for data assimilation so far. From the view-
point of the data assimilation, the use of a forecast
model that has the ability to accurately represent
the city-specific heat island effect is required, to
reduce the biases from observed data and to assim-
ilate more observation data.
In this study, we incorporated a forecast model

with an urban scheme into an ensemble-based as-
similation system and assimilated dense surface
data from Atmospheric Environmental Regional
Observation System (AEROS, Soramame-Kun in
Japanese nick name [1]), then, investigated how
the use of the urban scheme and the surface data
contributes to improve the reproducibility of the
rainfall through numerical experiments for a heavy
rain event in Tokyo metropolitan area on August
30, 2017.

2 Experiments and Results

We incorporated a forecast model (NHM) with a
single-layered square prism urban canopy model
(SPUC; Aoyagi and Seino 2011 [2]) as the urban
scheme into a regional mesoscale assimilation sys-
tem using the local ensemble transform Kalman
filter (NHM-LETKF; Kunii 2014 [3]). Using this
assimilation system, we conducted numerical ex-
periments of a short-time heavy rainfall event that
occurred in the Tokyo metropolitan area (Kanto)
during the southward movement of an autumn rain
front on August 30, 2017 (over 100 mmh−1 heavy
rainfall for the vicinity of Nerima Ward, Tokyo,
the location of which is indicated in Fig. 3). This
analysis-forecast system has 200 × 200 horizontal
grid points with 2 km resolution and the domain
covers whole Kanto plain. The ensemble-size is 51
and the analysis-forecast cycle experiments start at
15 JST on August 28th with the analysis time inter-
val of 3 hours. Almost as same as the observation
data used in JMA’s operational meso analysis sys-
tem are assimilated. The settings of forecast model
are the same as in Seino et al. 2018 [5].
The additional AEROS data (temperature, hu-

midity, and wind speed) used in this study generally
have a distribution as shown in Figure 1, although
there are some differences depending on the assimi-

lation time. We note that the temperature and hu-
midity data within 2 m height and the wind speed
data within 10 m height are used, by simple quality
control method.

In the following, we refer to the analysis and
forecast experiment using the conventional NHM-
LETKF as CTRL, the NHM-LETKF experiment
with SPUC as URB, and the URB experiment us-
ing the AEROS data for assimilation as URB S.

SPUC scheme has the effects of increasing tem-
perature of the lower troposphere mainly in the
evening, developing the mixing layer and increasing
the the amount of water vapor in the middle tro-
posphere. It is also known that the rise in surface
temperature is delayed in the morning. Figure 2
shows that the time series of temperature and wind
speed at Nerima station are improved in URB. We
can see that the initial temperature in URB is al-
most the same as the observation and the change
of the wind speed in URB with the passage of the
front (at 12 JST on August 30) is clearer than that
in CTRL.

Figure 3 shows the one-hour accumulated precip-
itation in the forecasts from the initial data at 03
JST on August 30. In URB and URB S experi-
ments, the shape of the heavy rain area along with
the local front becomes closer to that of observed
(RA) than CTRL. We also note that the begin-
ning of the construction of the heavy rainfall is get-
ting earlier in URB and URB S experiments. This
implies that the improvement of the near surface
temperature and wind fields by the use of SPUC
scheme and AEROS data contributes to properly
construct the convection which results in well re-
produced heavy rain distribution.

3 Summary

The implementation of the urban scheme SPUC
into the data assimilation system NHM-LETKF
has improved the reproducibility of precipitation
distribution in the localized heavy rainfall event on
August 30, 2017. On the other hand, since AEROS
is not specialized for capturing the atmospheric
fields (Nishi et al. 2015 [4]), it is sometimes difficult
to see a clear improvement in accuracy through its
use. Thus, we need to continue to research and de-
velop our system to make more effective use of the
surface observations.
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Figure 1: Distribution of the AEROS data used in the URB S
experiment at 03 JST on August 30.
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Figure 2: Time Series of surface temperature(upper) and wind
speed(bottom) at Nerima observation station(AMeDAS).
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Figure 3: One-hour accumulated precipitation ([mm/h]; shaded
as in the color bar) on August 30, 2017. The different panels
show the radar/raingauge analyzed precipitation (RA) and the
forecasts of CTRL, URB and URB S.
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1. Introduction
It is more effective for the numerical weather 

prediction (NWP) to assimilate satellite 
microwave radiance data in all-sky condition than 
those in clear-sky condition. Accordingly, all-sky 
assimilation for microwave imagers and some 
microwave humidity sounders was implemented in 
JMA’s global NWP system in December 2019 
(Shimizu et al. 2020), thereby improving mid- and 
lower-tropospheric humidity forecasts and tropical 
cyclone track forecasts. In this context, JMA newly 
applied the all-sky assimilation scheme to the 
radiances around 183 GHz from Suomi-NPP, 
NOAA20/ATMS, DMSP-F17, F18/SSMIS and 
Megha-Tropiques/SAPHIR. In addition, 
assimilation of radiances from FY-3C/MWHS-2 
for all-sky conditions was also commenced. These 
developments were implemented into JMA's 
operational global NWP system in June 2021. This 
report summarizes these developments and their 
impacts on forecasting. 

 
2. Quality control updates 

Observation error assignment is based on the 
symmetric (average of observation and first guess 
(FG)) cloud amount (Geer and Bauer 2011). As a 
measure of this, an index depending on available 
channels for each sensor is derived as follows: 
(1) If brightness temperatures (TB) at 90 GHz 
( 90 ) and 150 GHz ( 150 ) are available 
(Suomi-NPP, NOAA-20/ATMS, DMSP-
F17/SSMIS, and FY-3C/MWHS-2), a scattering 
index (SI) (Geer et al. 2014) is used, defined as 
 = ( − )− ( − ) 

 
Here, the superscript clr indicates the calculated 
TB under the assumption of clear-sky conditions.  
(2) If the TB of DMSP-F18/SSMIS at 150 GHz is 
unavailable due to malfunction, an alternative 
index defined as 37  (Geer and Bauer 2011) is 
used: 

= 1 − −
−  

 
Here, 37  represents the vertically polarized TB 
at 37 GHz, and 37ℎ represents the horizontally 
polarized value.  
(3) For Megha-Tropiques/SAPHIR, which has 
none of the above channels, the index 183 using 
the TB at lowest peaking channel 6 (183 ± 11 GHz) 

( ℎ6) is used (Chambon and Geer 2017): 
 = −  

 
Minor changes are applied in the quality control 

update. To expand microwave humidity sounder 
coverage over land, radiances of DMSP-
F17/SSMIS and Megha-Tropiques/SAPHIR are 
assimilated, when the radiances are less sensitive 
to the surface. Exclusive thinning between SSMIS 
and MHS is removed.  

The addition of all-sky microwave humidity 
sounders and the above updates significantly 
increases the number of assimilated microwave 
humidity sounder data (Figure 1). 

 
3. Impact evaluation: data assimilation 

experiments 
The impact of adding all-sky microwave 

humidity sounders and quality control updates was 
evaluated in data assimilation experiments with 
JMA’s global NWP system. The experiment 
period for boreal winter was from 10 December 
2019 to 11 February 2020, and boreal summer was 
from 10 July to 11 September 2019. The CNTL 
experiment had the same configuration as JMA’s 
operational global NWP system as of October 
2020, and the TEST experiment was performed 
with the updates described in Section 2 in addition 
to the CNTL experiment conditions. 

Figure 2 shows changes in the standard 
deviation of FG departures against CNTL. The 
FGs of TEST were closer to observations than 
those of CNTL for clear-sky radiance (CSR) data, 
which are sensitive to humidity in the mid- to 
upper-troposphere (Fig. 2a) and for radiosonde 
relative humidity (Fig. 2c). These results indicate 
that short-range forecasting of mid- to upper-
tropospheric humidity fields was improved 
consistently against observations. The FGs of 
TEST were also closer to observations of the CrIS 
(Fig. 2b) and aircraft wind observations (not 
shown). These outcomes indicate that all-sky 
assimilation for humidity sounders also has 
positive impacts on temperature and wind fields 
due to the tracing effect of 4D-var (Geer et al. 
2014). Figure 3 shows zonal mean improvement 
ratios in root mean square errors against ECMWF 
analysis for specific humidity and temperature. In 
the troposphere, humidity and temperature field 
were improved (Fig. 3), and this improvement was 



retained up to two forecast days (not shown). 

4. Summary
Addition of microwave humidity sounders 

(Suomi-NPP, NOAA20/ATMS, DMSP-F17, 
F18/SSMIS, Megha-Tropiques/SAPHIR, and FY-
3C/MWHS-2) to all-sky assimilation was 

implemented into JMA’s global NWP system in 
June 2021. Related experiments showed a positive 
impact on the accuracy of FGs for tropospheric 
humidity and temperature fields. The forecast 
fields of humidity and temperature were improved 
and these were retained up to two forecast days. 

Figure 1: Coverage of microwave humidity sounder data assimilated during the 00 UTC time window on 11 
September 2019. Left: before updates; right: after. 

Figure 2: Normalized changes in standard deviation for FG departures in (a) CSR radiances from operational 
geostationary satellites, (b) CrIS radiances, and (c) radiosonde humidity. Horizontal lines show confidence 
levels of 95%. The validation periods are from 20 July to 11 September 2019 (red lines) and from 21 
December 2019 to 11 February 2020 (green lines). 

Figure 3: Zonal mean of relative improvement ratio [%] in root mean square errors against ECMWF analysis 
for day 1 forecasts of specific humidity (left) and temperature (right). Warm and cool colors represent 
improvement and degradation of TEST values, respectively. The verification period is 1 month (August 
2020). 
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1. Introduction 

Three-dimensional variational data 

assimilation (3DVar) with 5-km horizontal grid 

intervals are used in JMA’s local analysis (LA) 

to create initial atmospheric analysis fields in 

local forecast model with 2-km horizontal grid 

intervals (Ikuta et al. 2021). In the assimilation 

reported here, the horizontally homogeneous 

and isotropic climatological background error 

covariance Bc is used (as of February 2022) for 

the background error covariance of the first 

guess, and the flow-dependent error covariance 

(Be) is not used. However, it is possible to 

implement hybrid 3DVar (Lorenc 2003) with 

the weighted average of Bc and Be as the 

background error covariance, estimating Be 

from the ensemble perturbations of the 

mesoscale ensemble prediction system (MEPS, 

Ono et al. 2021), as applied by JMA. This report 

outlines hybrid 3DVar implementation in LA 

and related effects. 

 

2. Hybrid 3DVar formulation 

In hybrid 3DVar, the analysis increment 𝛿𝐱 is 

determined by minimizing the cost function 

𝐽(𝐯) =
ଵ

ଶ
𝐯்𝐯 +

ଵ

ଶ
(H𝛿𝐱 − 𝐝)்Rିଵ(H𝛿𝐱 − 𝐝) + 𝐽௕௖, 

𝛿𝐱 ≡ Bଵ/ଶ𝐯 ≡ ൣ𝛽௖B௖
ଵ/ଶ 𝛽௘B௘

ଵ/ଶ൧ ቂ
𝐯௖
𝐯௘
ቃ, 

where 𝐯 = [𝐯𝑐
𝑻, 𝐯𝑒

𝑻]𝑻  is a control vector, 𝐝 =

𝐲௢ −𝐻൫𝐱௕൯ is the difference in observation 𝐲௢ 

from the first guess 𝐱௕ , 𝐻  and H  are the 

observation operator and the related tangent 

linear version, R  is the observation error 

covariance, and 𝐽௕௖ is a bias correction term. 𝛽௖ 

and 𝛽௘  are weights for the hybrid covariance, 

set as (𝛽௖
ଶ, 𝛽௘

ଶ) = (0.5, 0.5). 

Be is created from 100 ensemble 

perturbations using 5 lagged average forecasts 

(LAF) of MEPS with 20 members and spatial 

localizations with Gaussian functions (scales of 

1 √𝑒⁄  are set as 100 km horizontally and 0.5 km 

vertically) to reduce sampling errors. Be is 

inflated by multiplying the factor, which is the 

ratio of Bc and the horizontal mean of Be for 

potential temperature at 5.5 km above ground 

level, meaning that error variance is 

comparable to the magnitude of Bc.  

 

3. Verification 

To verify the effects of hybrid 3DVar 

implementation, sensitivity experiments were 

conducted in 3-hour blocks for 2 – 15 July 2020 

based on the CNTL experiment utilizing the 

configuration of JMA’s operational local NWP 

system as of May 2021, with Bc updated using 

National Meteorological Center method (Parrish 

and Derber 1992). Here, sensitivity experiments 

with 20 and 100 ensemble perturbations (1 and 5 

LAF, respectively) are referred to as M020 and 

M100, respectively. 

In M020 and M100 root mean square errors in 

forecasts were smaller than those in CNTL, 



especially for surface temperature, specific 

humidity and horizontal wind (not shown). The 

equitable threat score (ETS) for precipitation was 

better in M020 and M100 than that in CNTL, 

especially with thresholds over 5 mm/h (Fig. 1). 

These improvements were greater in M100. In 

forecasts from analysis at 12 UTC on 3 July, the 

position of predicted heavy rain in M100 was 

closer to observation than M020 and CNTL (Fig. 

2), which may relate to the flow-dependent 

analysis increment of low-level variables. 

Associated improvements were also observed in 

the boreal winter experiment for 11 – 21 January 

2020 (not shown). 

 

4. Summary 

The implementation of hybrid 3DVar utilizing 

100 ensemble perturbations of MEPS in LA 

improved forecasting of precipitation and surface 

variables. The update was applied to JMA's 

operational system in March 2022. 
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(a) (b) 

(d) (c) Figure 1. Equitable threat score 
for precipitation with a 10 mm/h 
threshold (vertical axis) at each 
forecast time [hours] (horizontal 
axis) in experiments for 2 – 15 
July 2020 compared with JMA 
radar/raingauge analyzed 
precipitation (blue: CNTL; 
green: M020; red: M100). Error 
bars show 95% confidence 
intervals. 

Figure 2. Three-hour precipitation (mm) for 18 – 21 UTC on 3 
July 2020 in predictions from 12 UTC (a: JMA radar/raingauge 
analyzed precipitation; b: CNTL; c: M020; d: M100). 


	BB_22_S1_ini
	01_Belochitski_Alexei_Neural_Networks
	01_Gordin_Vladimir_LocalizationSatelliteData
	01_Higuchi_Mayuko_shipborne_GNSS_assimilation
	01_Nakamura_Yuki_Aircraft_Temperature_Bias_Correction
	01_Nonaka_Kenichi_AtmosphericMotionVectorsAssimilation
	01_Rancic_Miodrag_Background_Error_Covariance
	01_Sawada_Ken_SPUC_AEROSAssimilation (1)
	01_Shimizu_Hiroyuki_All_sky_assimilation
	01_YOKOTA_Sho_Hybrid3DVar

	pbs@ARFix@1: 
	pbs@ARFix@2: 


