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Introduction 
 

The distance-based methods are primarily aimed at informing about location errors and are typically 
applied to a binary field that is usually attained through a thresholding process. Each measure has its 
idiosyncrasies and favor different types of errors over others. Some may provide complementary 
information, and the aim for this discussion is to get a sense of how they compare with each other. To 
that end, the geometric cases from the first spatial forecast verification Inter-Comparison Project (ICP, 
https://ral.ucar.edu/projects/icp/; Ahijevych et al. 2009; Gilleland et al. 2009;2010) are utilized. 

A brief description of each method is provided in Table 1. Note that some methods have selectable 
parameters, such as Baddeley’s Δ, the generalized performance metric (henceforth denoted 𝐺), Pratt’s 
figure of Merit (henceforth, 𝐹), and Zhu’s measure (henceforth, 𝑍). In the table, however, these 
parameters have been replaced with the values used in this comparison, which are also the most 
frequently applied choices. 

Pay particular attention to the grid points, 𝒔, over which the summary measures may be summed or 
maximized. For example, the Hausdorff distance is a maximum between two maximum distances. The 
first distance is maximized over all of the (shortest) distances from only those 𝒔 that fall in the set 𝐵, 
while the second is maximized over all the distances from only the 𝒔 that fall inside the set 𝐴. Figure 1 
demonstrates Hausdorff distance through an illustration. At each 𝒔 that falls within one of the two sets, 
the distance from that grid point is taken to every grid point in the other set. For a grid point in the set 
𝐵, the shortest of the values is denoted by 𝑑(𝒔, 𝐴), and for an 𝒔 in 𝐴, it is denoted 𝑑(𝒔, 𝐵). Then, 𝑑(𝒔, 𝐴) 
and 𝑑(𝒔, 𝐵) are found for each grid point in the two sets. The maximum of these resulting distances is 
the Hausdorff distance. It is clearly extremely sensitive to small changes in the domain, depending on 
where those changes occur. 

For 𝑀(𝐴, 𝐵), the average of the distances from 𝒔 in the set 𝐵 to those in the set 𝐴 are taken. That is, 
𝑑(𝒔, 𝐴) is averaged over all of the 𝒔 that fall in the set 𝐵; similarly, for 𝐹(𝐴, 𝐵). On the other hand, the 
summation in Baddeley’s Δ is over all 𝒔 in the entire domain. As a result, Δ is slightly sensitive to the 
location of the sets within the domain. 

𝐺 is a measure that multiplies the lack of overlap between 𝐴 and 𝐵 by the average distances of this lack 
of overlap, but where each average distance 𝑑(𝒔, 𝐴) and 𝑑(𝒔, 𝐵) is first tamed by the relative size of 



each set.  It is therefore the only distance-based measure that gives reasonable values when faced with   
empty fields and nearly empty fields. 

Table 1: Equations for each of the distance-based measures compared here. Let 𝒔 = (𝑥, 𝑦) ∈ 𝒟 represent a grid point 
(coordinate) in the domain 𝒟, 𝑁 be the size of the domain with 𝐴, 𝐵 ⊂ 𝒟 representing sets of grid points whose corresponding 
value is one (in the binary field).  Then let 𝑑(𝒔, 𝐴) be the shortest distance from 𝒔 to 𝐴, and similarly for 𝑑(𝒔, 𝐵). If a field is 
empty of one-valued grid points, define 𝑑(𝒔, 𝐴) = 𝐷 for some large value 𝐷, such as 𝑁. Further, let 𝑛஺ and 𝑛஻ represent the 
number of grid points in the sets A and B, respectively, and let 𝑛஺஻ represent the number of grid points in both sets.  Further, let 
𝑝஺ =

௡ಲ

ே
 and 𝑝஻ =

௣ಳ

ே
,  𝐼஺(𝒔) = 1 if 𝒔 ∈ 𝐴 and zero otherwise, similarly for 𝐼஻(𝒔). 

Method Name Method Equation 
 
Hausdorff distance (grid 
points) 
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Baddeley’s Δ 
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Mean-error distance 
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Pratt’s Figure of Merit 
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Zhu’s measure 
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Zhu’s measure, 𝑍(𝐴, 𝐵), averages the root-mean-square error (RMSE) between the two binary fields 
with 𝑀(𝐴, 𝐵). Subsequently, none of 𝑀(𝐴, 𝐵), 𝐹(𝐴, 𝐵) and 𝑍(𝐴, 𝐵) is symmetric in the sense that 



𝑀(𝐴, 𝐵) ≠ 𝑀(𝐵, 𝐴).   Gilleland (2017) argued that this lack of symmetric can be exploited to inform 
about misses v. false alarm types of errors. 

 

Figure 1: Two binary fields have been superimposed onto each other.  The areas where the fields are one-valued, respectively, 
are labeled 𝐴 and 𝐵.  The set 𝐴 consists of two isolated clusters (connected components) whereas 𝐵 is just one such blob.  If the 
smaller isolated component from 𝐴 were removed, the Hausdorff distance would be much smaller. 

Rankings 
It is informative to test the various methods by ranking the set of geometric test cases from the ICP. A 
ranking from best to worst by each method should shed light on how they inform about the closeness 
between two spatial (binary) fields. 

Table 2 summarizes the rankings over all measures and cases with some color-coding to assist in seeing 
the differences in rankings. Figure 2 to Figure 7 show the rankings by each measure. Where rankings are 
identical, in both the tables and the figures, the results are combined. Table 2 also summarizes what 
types of errors are represented by each case both pictorially and with words. How a subjective evaluator 
would rank the cases may vary, and may depend on the particular application.  So, there is no right or 
wrong set of rankings, but some may agree/disagree more with most subjective evaluators. 

 

 



Table 2: Rankings of each geometric case for each method summarized. Translation errors are given by numbers of grid points 
and denoted by pts. 

 

     
Method geom001 

translation-only 
error (50-pts) 

geom002 
translation-only 
(200-pts) 

geom003 
translation 
(125-pts) and 
large area bias 

geom004 
translation 
(125-pts) and 
aspect-ratio 

geom005 
translation (125-
pts) and huge 
area bias (but 
overlapping) 

𝐻(𝐴, 𝐵) Best Tied for 2 Tied for 2 Tied for 2 Worst 
𝐺(𝐴, 𝐵) Best 3 (near tie for 

worst) 
Tied for worst 2 Tied for worst 

𝑀(𝐴, 𝐵) 
and  

𝑍(𝐴, 𝐵) 
Miss 

2 (near-tie with 
3) 

Worst 3 (near tie with 
2) 

4 Best 

𝑀(𝐴, 𝐵) 
and  

𝑍(𝐴, 𝐵) 
False 
Alarm 

Best Worst 3 (near tie with 
2) 

2 (near tie with 
3) 

4 

𝐹(𝐴, 𝐵) 
Miss and 

False 
Alarm 

2 Worst 4 3 Best 

Δ(𝐴, 𝐵) Best Worst 3 2 4 
 

Figure 2 shows the five geometric cases ranked according to 𝐺.  This measure is a unitless measure that 
falls between zero (very bad forecast) to one (perfect forecast).  Technically, the user can select a 
parameter to determine how quickly the measure decreases to zero, and how bad the forecast has to be 
before it reaches zero. However, Gilleland (2021) found that half the domain size for this parameter 
yields meaningful results across several different domains. Therefore, half the domain size is used here. 

The first geometric case is usually considered the best by the subjective observer, but some users might 
prefer the fifth case because it is the only one that actually overlaps with the observations. 𝐺 gives a 
fairly high mark (about 0.84) to the first case and zero to the fifth case. The scaling error, which was 
intended to be a rotational error, is the second-best case according to 𝐺, favoring the proximity and 
overall, less false alarm areas of the forecast than the two larger-area forecasts. Nevertheless, 0.59 is a 
relatively bad mark, indicating that the forecast is poor. The next best case yields a 𝐺 ≈  0, so while it 
favors this thin but far away case over the two large forecast cases, it is nearly tied with them for worst. 
Unless any overlap is highly coveted, this measure gives the most reasonable results. In general, this 
measure does reward for overlap, but it also penalizes for lack of overlap, and there is too much lack of 
overlap in this geometric test case to warrant even a better subjective interpretation. 



 

Figure 2: ICP geometric test cases ranked from best (top left) to worst (tie between middle right and bottom left) according to 
𝐺ఉ from Gilleland (2021) using half the domain size for the 𝛽 parameter (as shown in Table 1 ).  Note that middle left is nearly as 
bad according to 𝐺ఉ (for this choice of 𝛽) as the worst two cases.  Each geometric case consists of a small (higher intensity) 
ellipse surrounded by a larger (lower intensity) ellipse.  The “observed” set is the blue ellipse in each field and the orange is the 
forecast (shown is F – O).  The measure is calculated for the binary fields derived by thresholding only the values above zero; so 
the entire areas encompassing the larger ellipses. 

The Hausdorff distance arguably gives the next best rankings of these cases (Figure 3).  𝐻 falls between 
zero (best) and infinity (increasing implies worsening). It chooses the same best and worst cases as 𝐺 but 
gives a tie to middle three cases. Some issues with this metric, however, include the aforementioned 
sensitivity to small changes in the field (e.g., Figure 1) and the related fact that it does not provide 
sensible information for the empty-field case or small frequency cases (Gilleland et al. 2020).  Again, 𝐺 
does not suffer from any of these failings. 



 

Figure 3: Same as Figure 2 but ranked according to the Hausdorff distance (units are number of grid points). 

Figure 4 shows the rankings for the MED and Zhu’s measure for the “miss” version; that is, it gives an 
average distance from the “observed” ellipse to the “forecast” ellipse. In this case, the rankings are 
identical because Zhu’s measure is just an average of the RMSE and the MED, so it is not surprising that 
they rank the cases identically. In this case, they both greatly prefer the case that has a huge forecast 
bias because it is the only one that overlaps with the “observed” ellipse and from the perspective of the 
observation, that would mean it is the best. For both of these measures, it is important to also look at 
the false alarm versions (Figure 5). Now, the huge bias case, while not considered the worst by either 
measure, is fairly low in the rankings (ranked second worst to the huge translation-only error). 



 

Figure 4: Same as Figure 2 but for MED (Miss, left) and Zhu (Miss, right).  Lower values for both measures mean better matches 
between the two ellipses. 

 

 

Figure 5: Same as Figure 4 but for the false alarm versions of the measures. 

FoM also has a “miss” and “false alarm” version, but nevertheless ranks these geometric cases 
identically (Figure 6). Its rankings are almost identical to those of the “miss” version of MED and Zhu. 



Only one pair of rankings are switched (the third and fourth). It is unfortunate that it ranks the cases this 
way for both versions because it is a questionable ranking that does not shed any additional light on the 
performance of each forecast. 

 

Figure 6: Same as Figure 2 but for FoM.  Both the “miss” and “false alarm” versions of this measure rank the cases identically.  It 
gives a low value for each case. 

Finally, Figure 7 displays the results for Baddeley’s Δ metric. The rankings are sensible, but it is strange 
that the values differ so much for three of the worst cases, whereas the Hausdorff and 𝐺ఉ consider them 
more-or-less equally poor. It is also disappointing that the huge translation-only error should be 
considered much worse than the large and huge bias cases. 



 

Figure 7: Same as Figure 2 but for Baddeley’s 𝛥 metric. 

Fine v. Coarse Scale Forecast Performance 
One of the major reasons behind the push for new verification methods was that subjectively better, 
high-resolution forecasts often had worse verification scores than subjectively poorer coarse-resolution 
counterparts. But do the new measures also give contradictory results in this sense? In this section, a 
single forecast is smoothed to a coarser resolution and each is compared with the corresponding 
original (finer scale) forecast by ranking the results of each distance-based measure across a range of 
thresholds. 

Figure 8 shows one of the real cases from the ICP with one of the corresponding forecasts and a 
smoothed version of this forecast. The smoothing was carried out using a convolution smoothing 
technique with a disk-shaped kernel having radius of 25 grid points. This radius was chosen so as to not 
leave any doubt about which forecast model is “better” from a subjective standpoint. Clearly the coarse-
resolution version is not as accurate as the original high-resolution model. 



 

Figure 8: Stage II reanalysis (“observation”, top left), WRF v. 4 NCAR (top middle) and a convolution-radius smoothing (with 
radius = 25 grid points) of WRF v. 4 NCAR (top right) for precipitation (mmh-1) with 24-h lead time.  The differences forecast 
minus “observation” for each competing forecast model (bottom row).  Valid time is 1 June 2005 at 0000 UTC. 

 

Table 3: Top table are results of the distance-based measures between the Stage II reanalysis and WRF 4 NCAR and bottom 
table are those for the smoothed version of WRF 4 NCAR.  Coloring is to help visualize which are ranked better for the original v. 
smoothed forecasts.  Yellow means better and red worse.  Other colors indicate a near tie. 

 𝐻(𝐹ଵ, 𝑂) Δ(𝐹ଵ, 𝑂) 𝐺(𝐹ଵ, 𝑂) 𝑀(𝐹ଵ, 𝑂) 𝑀(𝑂, 𝐹ଵ) 𝐹(𝐹ଵ, 𝑂) 𝐹(𝑂, 𝐹ଵ) 𝑍(𝐹ଵ, 𝑂) 𝑍(𝑂, 𝐹ଵ) 
>0.1 89.73 26.58 0.61 5.24 5.03 0.63 0.54 2.69 2.59 
>1.1 146.62 33.06 0.86 9.33 11.52 0.42 0.37 4.70 5.80 
>5.1 344.42 51.00 0.98 14.59 21.85 0.11 0.16 7.30 10.94 

 

 𝐻(𝐹ଶ, 𝑂) Δ(𝐹ଶ, 𝑂) 𝐺(𝐹ଶ, 𝑂) 𝑀(𝐹ଶ, 𝑂) 𝑀(𝑂, 𝐹ଶ) 𝐹(𝐹ଶ, 𝑂) 𝐹(𝑂, 𝐹ଶ) 𝑍(𝐹ଶ, 𝑂) 𝑍(𝑂, 𝐹ଶ) 
>0.1 282.46 52.92 0.15 5.06 6.05 0.43 0.57 2.62 3.12 
>1.1 317.95 78.62 0.75 15.86 9.40 0.30 0.44 7.97 4.74 
>5.1 360.17 131.60 0.99 62.63 25.48 0.00 0.01 31.32 12.75 

 



Table 3 shows the results of the distance-based measures for the forecast (top) and its smoothed 
version (bottom).  Colors help to visualize which forecast is ranked better with yellow indicating better 
and red worse.  Other colors mean that the values indicate a near tie.  Figure 9 to Figure 11 show the 
corresponding distance maps for each threshold choice, which helps to visualize where precipitation 
amounts exceed the threshold.  White (inside the domain, cf. Figure 8 bottom) indicates that the 
precipitation exceeded the threshold in that region and warmer colors indicate no precipitation in the 
vicinity. For the most part, the distance-based measures provide good evaluations in the sense that they 
prefer the more realistic and closer matched higher-resolution forecast.  However, there are some 
discrepancies.  Notably, asymmetric measures all indicate that from the forecast’s perspective, the 
smoothed forecast is better, but by the same token, from the point of view of the observations, the 
higher-resolution forecast is better.  The 𝐺ఉ is not a good measure for extreme events because it down 
weights fields that are emptier thereby giving a higher score.  In this case, for the highest threshold, it 
slightly favors the smoother forecast. 

 

Figure 9: Distance maps for precipitation > 0.1 mmh-1 valid 1 June 2005. Top left is the Stage II reanalysis, top right is WRF 4 
NCAR and bottom left is the smoothed version of WRF 4 NCAR. 

 



 

Figure 10: Same as Figure 9 but for precipitation > 1.1 mmh-1. 

 



 

Figure 11: Same as Figure 9 but for precipitation > 5.1 mmh-1. 
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