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Introduction

   Water vapour is one of greenhouse gases. The knowledge about long-term changes in water 

vapour amount (VA) distributions in the atmosphere based on hourly values is necessary in 

studying global climate change. The paper presents the series of the 1-st and 2-nd order trends 

[1] of water vapour amount at standard heights in the 0-30-km atmospheric layer over sea 

level for different months, seasons and the year as a whole. 

Data and methods

   The CARDS global aerological dataset [2] updated by current data [3] for the period 1964–

2018 was used in this research. The computations are based on the dataset from 770 stations 

with relatively homogeneous observations. The necessary condition for including a station in 

this study was 15-year observations for the full observation period including 2018.  

   The Akima cubic spline interpolation method was used to compute VA values and their 

standard deviations (σVA) in the 0–30-km layer above sea level on the basis of standard 

pressure levels and specific points of vertical profiles. 

   The trends were calculated for each station by using the classic least squares method. The 

values obtained for all stations were averaged considering the area of the station influence. 

The anomalies were calculated with respect to the long-term means for the full period 1964–

2018. 

Results

   The Figure shows spatiotemporal distributions of long-term monthly means and standard 

deviations (σVA), the 1-st and 2-nd order trends for anomalies of water vapour amount and 

σVA in the 0–30-km atmospheric layer for different months, seasons and the whole year. 

   The annual changes of the long-term monthly means in the 0–30-km layer range from 4.23 

to 27.11 kg/m2 for VA. The annual changes of the 1-st order trends of the long-term monthly 

means anomalies in the 0–30-km layer range from -0.040 to 0.143 kg/m2/decade for VA. The 

global water vapour amount in this layer increases mainly at 0–3 km for all months, while at 

0–30 km it increases from June to September. 

   The annual changes in standard deviations σVA range from 3.05 to 16.69 kg/m2. The 1-st 

order trends of σVA are negative for all months in the entire 0–4-km layer and throughout the 

0–30-km layer from July to September. The most intense decrease of σVA is detected at 27–29 

km in winter and autumn. The most intense increase of σVA (with significance of more than 

95%) is detected in the entire 9–13-km layer for February and March. Significant increase of 

σVA is detected throughout the 0–2-km layer for all the months. 

   The 2-nd order trends for VA are positive for all months in the entire 0–30-km layer, which 

implies the acceleration of changes for VA with the year 2018 approaching. The annual 

changes in the 2-nd order trends of the long-term monthly means anomalies in the 0–30-km 

layer range from -0.018 to 0.257 kg/m2/decade2 for VA. The highest positive accelerations of 

changes for VA were detected at 8-26 km for winter and autumn and at 6-26 km, for spring. 

   The 2-nd order trends of standard deviations σVA are positive in the 8-30-km layer for all the 

months. The annual changes in the 2-nd order trends of standard deviations σVA in the 0–30-

km layer range from -0.002 to 0.163 kg/m2/decade2. The highest positive accelerations of 

changes in σVA were detected at 18–26 km for spring. 



a) b)

c) d)

e)
f)

  Month   Season   Year    Month   Season    Year 

Figure. Long-term means (a), first-order trends of anomalies of long-term means for VA (c, 

kg/m2/decade), second-order trends of anomalies of long-term means for VA (e, 

kg/m2/decade2), and standard deviations σVA (b), first-order (d) and second-order (f) trends of 

σVA in the 0–30-km atmospheric layer for the year as a whole, for each month and season. 

Blue and pink segments correspond to maximum and minimum values. The global statistics 

for months and seasons were subject to twofold smoothing. Three–points smoothing was 

used. Trends with significance of not less than 50% are marked by the sloping line segments 

and those with significance of not less than 95% – by lattice. Grey color marks areas with 

insufficient data for calculations. 1964–2018. 

Conclusions

   Spatiotemporal distributions of the linear trends of water vapour amount anomalies are not 

uniform in the 0–30-km atmospheric layer above sea level. The water vapour amount 

increases mainly in the entire 0–3-km layer for all the months and throughout the 0–30-km 

layer from June to September. 
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Introduction 

The knowledge about long-term changes in wind speed (S) distributions in the atmosphere 

obtained from hourly values is necessary to study global climate change and to solve many 

practical problems. The paper presents the series of the 1-st and 2-nd order trends [1] of wind 

speed at standard heights in the 0–30-km atmospheric layer over sea level for the year as a 

whole, for different months and seasons. 

Data and methods 
Results of radiosounding observations from the CARDS global aerological dataset [2] that 

were updated by current data from RIHMI-WDC [3] for the period 1964–2018 were used in 

this study. The calculations are based on the dataset from 770 stations with relatively 

homogeneous observations. The necessary condition for including a station in the research 

was 15-year observations for the full observation period including 2018. 

The Akima cubic spline interpolation method was used to calculate S values and their 

standard deviations (σS) in the 0–30-km layer above sea level on the basis of standard 

pressure levels and specific points of vertical profiles. The trends were computed for each 

station by using the least squares method. The anomalies were calculated with respect to the 

corresponding long-term means for the period 1964–2018. The values obtained for all the 

stations were averaged taking into account the area of the station influence. 

Results 
The Figure shows that the spatiotemporal distributions of the 1-st order trends (classical 

linear trends) for anomalies and standard deviations of wind speed are nonuniform in the 0– 

30-km atmospheric layer above sea level. 

The annual changes in the long-term monthly means of the wind speed S in the 0–30-km 

layer range from 4.26 to 23.24 m/s. The annual changes of the 1-st order trends of the long- 

term monthly means anomalies in the 0–30-km layer range from -0.034 to 0.256 m/s per 

decade for S. The global wind speed in this layer mainly increases at 0–1 km and at 15–19 km 

for all months, while at 28–30 km it increases in May, November and December. 

The annual changes in standard deviations σS of wind speed range from 3.26 to 16.53 m/s. 

The 1-st order trends of σS are negative for all months in the entire 5–12-km layer and 

positive for all months throughout the 14–30-km layer. The most intense decrease of σS (with 

significance of more than 95%) is detected at 3–9 km in winter and at 5–7 km for spring and 

autumn. The most intense increase of σS (with significance of more than 95%) is detected in 

the entire 18–30-km layer for summer and autumn. Significant increase in σS is detected 

throughout the 0–1-km layer for spring, summer and autumn 

The 2-nd order trends for S are mostly positive, which implies the acceleration of changes 

for S with the year 2018 approaching. The annual changes in the 2-nd order trends of the 

long-term monthly means anomalies in the 0–30-km layer range from -0.085 to 0.405 m/s per 

decade2 for S. The highest positive accelerations of changes for S were detected at 20–24 km 

in summer and autumn. 

The 2-nd order trends of standard deviations σS are positive in the 0–17-km layer for winter 

and spring, in the 0–30-km layer, for summer, and in the 0–22-km and 28–30-km layers, for 
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autumn. The annual changes in the 2-nd order trends of standard deviations σS in the 0–30-km 

layer range from -0.155 to 0.294 m/s per decade2. 
 

  
a) b) 

  
c) d) 

  
e) f) 

Month Season Year Month Season Year 

 

Figure. Long-term means (a), first-order trends of anomalies of long-term means for S (c, 

m/s/decade), second-order trends of anomalies of long-term means for S (c, m/s/decade2), and 

standard deviations (b), first-order (d) and second-order (f) trends of standard deviations σS in 

the 0–30-km atmospheric layer for each month, season and the year as a whole. The global 

statistics for months and seasons were subject to twofold smoothing. Three–points smoothing 
was used. Trends with significance of not less than 50% are marked by the sloping line 

segments and those with significance of not less than 95% – by lattice. Blue and pink 

segments correspond to maximum and minimum values. 1964–2018. 

Conclusions 
Spatiotemporal distributions of the linear trends of wind speed anomalies are not uniform in 

the 0–30-km atmospheric layer above sea level. The wind speed increases mainly at the 0–1- 

km and at 15–19-km heights for all months, while at 28–30-km it increases in May, November 

and December. 
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Introduction 
   Estimates of the cloud layer number are useful for studying the atmospheric vertical structure 

and climatic changes, and for assessing propagation conditions of electromagnetic waves. 

Different aspects of research on the cloud layer number were discussed in [1–4]. The paper 

presents global long-term estimates of the number of reconstructed cloud layers with the cloud 

amount of 0–20, 20–60, 60–80, 80–100, 0–100% and trends of their anomalies. Calculations were 

conducted for the atmospheric layers 0–2, 2–6, 6–10 and 0–10 km above the surface level. Means 

and trends were found for each month, season and the year as a whole. 

Data and methods 
   To determine cloud boundaries and cloud amount [5], we used CE-method and CARDS global 

dataset [6] supplemented by current data from AROCTAC dataset [7] for the 1964-2018 period. 

To compute the statistics, only observations including both temperature and humidity data from 

the surface to the 10-km height were applied. We did not consider cloud layers for which the CE-

method gave thickness less than 50 m. The existence of several cloud layers with different cloud 

amounts was allowed. 

Results 
   The Table presents global annual mean values and trends of anomalies of the cloud layer 

number with regard to the cloud amount gradation, as well as ranges of annual variations in 

monthly means and trends of their anomalies for the atmospheric layer of 0–10 km. The mean 

numbers of cloud layers with cloud amounts 0–100, 0–20 and 80–100% and the corresponding 

trends estimated for atmospheric layers 0–2, 2–6, 6–10, 0–10 km over the Globe are shown in the 

Figure for months, seasons and the year as a whole. The trends with significance of not less than 

50% are marked by a square and those with significance of not less than 95% – by a square with 

a cross. 

The trends were estimated for each station by using the least squares method. The anomalies 

were calculated with respect to the corresponding long-term mean values for the period 1964–

2018. The values obtained for all stations were averaged taking into account the area of the 

station influence. The global statistics for months and seasons were subject to twofold smoothing. 

The three-points smoothing was used. 
  Table.  

The global annual mean values and trends of anomalies of cloud layer number with taking into 

account the cloud amount gradation and intra-annual variations ranges (Δ) of monthly averaged 

values and trends of their anomalies for the atmospheric layer 0–10 km over the surface level. 

Cloud coverage,  

%  
Mean Trends Δ mean Δ trends 

Number of soundings,  

millions 

0–20  4,2 0,023 4,25–4,36 0,021–0,026 15,4 

20–60  1,5 0,004 1,51–1,52 0,003–0,005 7,7 

60–80  1,2 0,003 1,19–1,20 0,003 4,1 

80–100  2,8 0,017 2,67–2,88 0,016–0,019 12,3 

0–100 6,62 0,036 6,59–6,65 0,033–0,038 17,9 



a) b) 

c) d) 

e) f) 

  Month    Season   Year   Month   Season     Year 

Figure. Global long-term means (a, c, e) and trends of their anomalies (b, d, f; n per decade) of the 

number (n) of cloud layers with regard to the cloud amount gradation for different atmospheric layers for 

each month, season and year. Black lines – for 0–2 km, red lines – 2–6 km, blue lines – 6–10 km, green 

lines – 0–10 km. (a, b) – 0–100%, (c, d) – 0–20%, (e, f) – 80–100% cloud coverage. 1964–2018. 

Conclusions 
   The results show that the mean number of cloud layer and the trends of their anomalies depend 

on the cloud amount gradation. Their values for the gradations 0–20 and 80–100% are several 

times higher than those for the gradations 20–60, 60–80%. 
   Long-term monthly (seasonal) means of the number of cloud layers with the fixed cloud amount 

gradation differ little for each atmospheric layer considered in this paper.  

   The minimums of trends for cloud layers with cloud coverage 0–100% and 0–20% in the 

atmospheric layers 0–10, 2–6 and 6–10 km are detected in winter and the maximum – in summer. 

The cloud layer number increases in the 2–6-km atmospheric layer more than in the 6–10-km 

layer for all months and seasons. 

 The minimums of trends for cloud layers with cloud coverage 80–100% in the atmospheric 

layers 0–10 and 2–6 km are detected in summer and the maximums – in winter, while in the 6–

10-km atmospheric layer, on the contrary, maximums – in summer and minimums – in winter. 
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Introduction

The ratio of predictable components (RPC) is a useful metric of forecast skill (Kumar et al. 2014;
Eade et al. 2014), although it begs the question of whether one should expect an ensemble mean to covary
more with observations than with its own ensemble members. An implicit assumption is that the forecast
model is independent of observations, but even if the forecast model is not assimilative, there remains the
possibility that errors are correlated, or in other words, that the observation and forecast model measures
[in the context of a simple measurement model (Siegert et al. 2016)] are still not independent. A new
correlation method has been developed by Székely et al. (2007) and Székely and Rizzo (2009) that allows
this statistical independence assumption to be tested. We compare the two RPC values for a single raw
ensemble simulation using the Lorenz 1963 modelling framework of Mayer et al. (2021).

Results

Figure 1: Distributions of the ratio of predictable components (RPC) for 100 40-member ensemble hindcasts
of the Lorenz model (Mayer et al. 2021), where RPC is computed as a ratio of (red) Pearson correlations
(Scaife and Smith 2018) and (blue) distance correlations (Székely et al. 2007; Székely and Rizzo 2009).
The bin interval is 0.05 and the mean and standard deviation of the two distributions are included.

It is convenient to calculate a distance correlation RPC without the added concern of timeseries au-
tocorrelation. Thus, instead of the monthly and seasonally averaged timeseries that is the focus of Mayer
et al. (2021), we start with one of their raw ensemble simulations. For each of 100 different initial conditions
on the Lorenz attractor, a noisy observational simulation and a 40-member ensemble is used to calculate
RPC using either a ratio of Pearson or distance correlations (the RPC numerator is the correlation of
observations with ensemble-mean, and the denominator is the average correlation over all ensemble mem-
bers with the mean, excluding that member). In order to avoid autocorrelation, 20 samples at 100 time
intervals are taken from each 2001-unit perturbed raw timeseries.

Figure 1 shows one of the underconfident (i.e., large initial spread) ensemble experiments of Mayer
et al. (2021), which yields a mean RPC (Pearson) of greater than one and a large RPC standard deviation
as well. Interestingly, the RPC (distance correlation) has a mean value closer to one, and hence, is more
consistent with expectations (Kumar et al. 2014; Eade et al. 2014). The RPC variance is also much reduced.
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Summary

It may be difficult to define predictability, and thus any linear measure of it, but perhaps a distance
correlation RPC is also a viable diagnostic of forecast model skill. The physical basis for assuming that
measures are independent is sound, although measurement models themselves are typically simple, and
may implicitly impose a dependence. Strictly speaking, we do not consider a forecast ensemble that
is marginally calibrated (Siegert et al. 2016), but it seems notable that under this assumption, RPC is
approximately β−1 (i.e., inverse of the multiplicative parameter of linear agreement between model and
observations). However, it is difficult to anticipate a value of β between the limits of ordinary and reverse
linear regression. For a given value of distance correlation between 0 and 1, it seems that any value of β
is possible (Edelmann et al. 2021).
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1. Introduction

During summer monsoon season from June to September (JJAS), rainfall over Indian region exhibits 

large intra-seasonal fluctuations between active and weak spells.  Intense weak/dry spells of rainfall are 

referred to as breaks during the peak monsoon months of July-August (Ramamurthy, 1969).  Despite 

extensive research on breaks in Indian summer monsoon (ISM) (Krishnan et al. 2000, Gadgil and 

Joseph, 2003, Rajeevan et al. 2010), the links of monsoon variability over Indian region to that over the 

Indian ocean and the Pacific are not adequately understood. This topic is addressed in the present study 

for weak/break rainfall phases during JJAS 2018. All weak/lull/break spells are referred as weak spells. 

2. Data

(i)Daily merged satellite gauge rainfall data (0.25°x0.25°) (Mitra et al. 2009) 

(https://www.imdpune.gov.in/Seasons/Temperature/gpm/Rain_Download.html) (ii) Daily un-interpolated 

Outgoing Longwave Radiation (OLR) (2.5°x2.5°) data provided by the NOAA/OAR/ESRL PSL, 

Boulder, Colorado, USA., downloaded from https://psl.noaa.gov/data/gridded/data.uninterp_OLR.html. 

(iii) Daily wind and geopotential height at 200hPa from NCEP/NCAR reanalysis (Kalnay et al., 1996). 

3. Results

The important features of rainfall anomalies over India and Indian ocean (Fig. 1) for weak rainfall spells 

during JJAS 2018 (14-21June (WS1), 27July-7August (WS2), 9-20September (WS3), 24-30 September 

(WS4)) identified based on the criteria by Rajeevan et.al. (2010) are: (i)There are large differences in 

rainfall anomaly pattern of four weak spells.  WS2 and WS3 are the long intense events.  (ii)Rainfall 

anomaly pattern of WS2 over India closely resemble the composite rainfall anomalies associated with 

breaks based on (1888–1967) (Ramamurthy, 1969), which is characterized by large negative anomalies 

over monsoon core zone (MCZ;18°-28°N, 65°-88°E), negative anomalies over west coast, while positive 

anomalies over northeast India in association with the northward shift of the monsoon trough to the 

foothills of the Himalaya.  WS2 and WS3 pattern are similar over India except for the absence of 

increased rainfall over the foothills in WS3. (iii)Rainfall anomalies of opposite sign over MCZ and 

Equatorial Indian Ocean (EIO) in WS4 is indicative of the mutual competition between convection over 

India and EIO (Sikka and Gadgil,1980).  Out-of-phase OLR anomalies over MCZ and Northwest Pacific 

Ocean (NWPO) (Raman, 1955) are linked with the occurrence of WS1 and WS4 (Fig. 2). A quadrupole 

structure comprising of positive (negative) OLR anomalies over the Indian region and equatorial west 

Pacific (EIO and NWPO) (Gadgil and Joseph, 2003) is observed during WS1 and WS4 (Fig. 2).  

Enhanced convection over foothills of the Himalaya and large parts of tropical Pacific Ocean possibly 

caused WS2 (Fig. 2).  Influence of the intrusion of deep trough in the mid-latitude westerlies into India in 

the upper troposphere (Ramaswamy,1962) on formation of WS3 is evident (Fig. 3).   
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Figure 1: Spatial distribution of rainfall anomalies. Top left (Weak spell 1), top right (weak spell 

2), bottom left (weak spell 3), bottom right (weak spell 4)  

Figure 2: Spatial distribution of OLR 

anomalies over tropical Indo-Pacific. From top 

to bottom (weak spell 1, weak spell 2, weak 

spell 3, weak spell 4) respectively. 

Figure 3: Spatial distribution of Wind (vector) 

overlaid by Geopotential height at 200hPa 

(shaded) over tropical Indo-Pacific. From top to 

bottom (weak spell 1, weak spell 2, weak spell 

3, weak spell 4) respectively.  
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Long-period changes of the El Niño / Southern Oscillation (ENSO) characteristic periods 

are analyzed with the use of special method of cycles proposed in [1] (see also [2,3]). This method 

is based on the analysis of phase portraits for quasi-cyclic processes like ENSO. ENSO processes 

are characterized by the time series of the Southern Oscillation Index (SOI) and sea surface 

temperature T(t) in the Pacific equatorial basins Niño-3, Niño-3.4 and Niño-4 

(https://psl.noaa.gov/gcos_wgsp/). In particular, if there is a statistically significant linear 

regression of d2T(t)/dt2 on T(t) with a negative regression coefficient -ω2(t), then the process can 

be fitted by a harmonic oscillator:  

 

d2T/dt2 + ω2T = 0,    (1) 

T(t) = A(t)sin[ω(t)t + φ(t)] .   (2) 

The variables dT/dt and d2T/dt2 can be determined by taking the second-order finite differences of 

the original time series T(t). The characteristic frequency ω(t) and corresponding period P(t) are 

calculated using the least-squares fitting technique at a moving segment of length I0. To filter out 

the higher frequency noise, the raw data can be smoothed taking running means at the window Is.  

 Figure 1 (a,b) shows phase portraits for ENSO by the data for indices Niño-3 (a) and Niño-

4 (b) for the period 1950-2020 (with Is = 12 months). Trajectories for the strongest El Niño events 

in last decades are highlighted in different colors. Difference between the phase portraits in Fig. 1 

indicates a substantial difference in the dynamics of El Niño phenomena of different types, 

characterized by temperature anomalies in the eastern and central equatorial regions of the Pacific 

Ocean.  

 

 (a)  (b)  

Fig. 1. Phase portraits for ENSO by the data for indices Nino 3 (a) and Nino 4 (b) for the period 

1950-2020 (with Is = 12 months) 

Figure 2 (a-d) shows changes of periods of ENSO, characterized by various indices: Niño-

3 (a), Niño-4 (b), Niño-3.4 (c), SOI (d) from analysis of data for the period 1870-2020 with Is = 

12 months and I0 = 120 months. Black curves (corresponding to the 30-years running means) 

mailto:mokhov@ifaran.ru
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characterize long-term changes, against the background of which there are significant interdecadal 

variations. 

 

(a)    (b)  

(c)     (d)  

Fig. 2. Changes of periods of ENSO, characterized by various indices: Niño-3 (a), Niño-4 (b), 

Niño-3.4 (c), SOI (d) from analysis of data for the period 1870-2020 with Is = 12 months and I0 = 

120 months (black curves correspond to the 30-years running means).  

 According to the results obtained, changes in the characteristic ENSO periods determined 

by different indices are very different. In particular, significant differences are associated with 

changes for Niño-3 and Niño-4 indices, which characterize different manifestations of El Niño in 

the eastern and central equatorial regions of the Pacific Ocean.  

This work was supported by the Russian Science Foundation (project 19-17-00240).  
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To characterize total activity of atmospheric blockings over extended areas and concrete 

time intervals (for instance: over the territory of Russia as a whole during vegetation period) an 

integral blocking index II was proposed using local diagnostics of atmospheric blockings in each 

longitudinal sector with Δλ = 2.5°. In particular, in [1], a variant of the integral index of blocking 

activity II was used when analyzing fire hazardous seasons for a specific time interval Δt from 

April to October in the Russian longitudinal sector 20°-180°E. The II value was determined by the 

percentage of the sum of days with diagnosed atmospheric blocking in all local sectors Δλ of the 

Russian longitudinal sector to the maximum possible number of days with atmospheric blockings. 

The criterion proposed in [2] was used as a local blocking condition with the necessary condition 

for its fulfillment for at least 5 consecutive days.  

Here, we present estimates of the integral blocking index for the Northern Hemisphere 

(NH) and for Russia as a whole based on the ERA-Interim reanalysis data for the 40-year period 

1979–2018 with a two-dimensional (2D) local blocking condition according to [3].  

 

(a)  (b) 

Fig. 1. Interannual variations of II for the NH as a whole for the summer (a) and winter (b) seasons.   

 

 

(a) (b)  

Fig. 2. Interannual variations of II for Russia as a whole for the summer (a) and winter (b) seasons.   

 

 

Figures 1,2 show the interannual variations of II for the NH (Fig. 1) and for Russia as a 

whole (Fig. 2) for the summer (a) and winter (b) seasons. Table 1 shows annual and seasonal 

estimates of integral index of blocking activity II [%] in the Northern Hemisphere and Russia for 

two periods (1979-1998 and 1999-2018).  
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Table 1. Annual and seasonal integral index of blocking activity (%) in the Northern Hemisphere 

and Russia for two periods (1979-1998 and 1999-2018).  

 

Region Season 

1979-1998  

Mean Value (%) 

(±Standard Deviation) 

1999-2018 

Mean Value (%) 

(±Standard Deviation) 

Northern 

Hemisphere 

Annual 4.6 (±0.6) 4.6 (±0.6) 

Winter 4.3 (±1.1) 4.1 (±1.6) 

Spring  4.3 (±1.1) 4.1 (±1.0) 

Summer  6.2 (±1.1) 6.5 (±1.7) 

Autumn 3.4 (±0.9) 3.5 (±1.0) 

Russia 

Annual 4.2 (±0.8) 4.2 (±0.8) 

Winter 4.2 (±1.6) 4.0 (±1.9) 

Spring 3.6 (±1.2) 3.2 (±1.1) 

Summer 6.2 (±1.5) 6.7 (±1.7) 

Autumn 2.7 (±1.3) 3.0 (±1.3) 

 

 

The estimates indicate a large interannual variability of II in all seasons for the NH as a 

whole and for different regions, including Russia as a whole. The highest average values of II were 

obtained for summer, while the lowest ones were estimated for autumn. Comparison of results for 

two 20-year periods in Table 1 shows relatively small changes of the II mean values, especially of 

the annual-mean values. Remarkable increase of the II standard deviations was obtained for the 

NH for Russia as a whole in summer and in winter.  

 

This work was supported by the Russian Science Foundation project 19-17-00240. 
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Estimates of the sensitivity of the surface air temperature in different latitudinal belts of the 

Northern Hemisphere (NH) to the radiative forcing of greenhouse gases (GHG) and changes in the 

modes of natural climatic variability, including the Atlantic Multidecadal Oscillation (AMO) and 

El-Nino / Southern Oscillation (ENSO), have been obtained similarly to [1-3] (see also [4,5]). 

Three-component autoregressive (AR) models were used for surface temperature anomalies T with 

a year lag: 

Tn = a0 + a1Tn-1 + a2IGHG,n-1 + a3Im,n-1 + ξn. (1) 

Here n is the discrete time (years), ξn is the noise (residual model errors), IGHG is the radiative 

forcing of greenhouse gases, a0, a2,  and a3 are the model coefficients, Im,n-1 is the climate mode 

index (AMO or ENSO). 

 

 
Table 1. The coefficients (with the doubled standard deviations Δ) of empirical models (1) for 

different latitudinal belts in the Northern Hemisphere. 
 

 

 

 
Northern 

Hemisphere 

degrees of 

latitude 

Coefficients of empirical models (1) 

AMO ENSO 

a2 ±Δa2 

K.W-1.m2 

 

a3 ±Δa3 

a2 ±Δa2 

K.W-1.m2 

 

a3 ±Δa3 

60 – 90 0.35±0.10 0.70±0.50 0.30±0.10 0.09±0.12 

30–60 0.21±0.06 0.44±0.25 0.16±0.05 0.03±0.05 

0 – 30 0.15±0.05 0.23±0.20 0.14±0.05 0.04±0.05 

mailto:mokhov@ifaran.ru
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The estimates of the coefficients of the model (1) characterizing the sensitivity of 

temperature anomalies in different latitudinal belts to changes of IGHG and Im for the period 1880- 

2012 are given in Table 1. The analysis used annual long-term data for surface temperature for 

different latitudinal belts (ftp://ftp.ncdc.noaa.gov/pub/data/). To characterize the key modes of 

natural climatic variability, we used the AMO index (http://www.esrl.noaa.gov/psd/data/) and 

ENSO index Nino 3.4 (http://www.esrl.noaa.gov/psd/data/). 

Estimates of the coefficients in Table 1 are statistically significant at the 95% level if they 

exceed the doubled standard deviation. According to them, the temperature sensitivity to the GHG 

radiative forcing in Arctic latitudes is more than twice as large as that in the tropical latitudes, both 

when accounting for AMO and for ENSO. The errors in the estimates of the sensitivity coefficients 

in Arctic latitudes are twice as large as in the tropical ones. 

The estimates of temperature sensitivity to changes in AMO and ENSO indices are 

generally less significant than to changes in GHG radiative forcing. Estimates of the temperature 

sensitivity to AMO changes are more significant than those to ENSO changes in all latitudinal 

belts of the NH. The temperature sensitivity to changes in AMO and ENSO indices is greatest in 

the Arctic latitudes. The corresponding errors in the estimates of the temperature sensitivity 

are greatest in Arctic latitudes. The temperature sensitivity to changes in the AMO index in 

Arctic latitudes is three times higher than that in the tropical latitudes, and more than one and a half 

times higher than that in the middle latitudes. The estimates of the temperature sensitivity and 

their errors in Arctic latitudes to changes in the ENSO index are more than twice as large as those 

in the tropical and middle latitudes. 

This work was supported by the Russian Science Foundation (project 19-17-00240). 
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The annual variations of the frequency of occurrence of polar lows (PL) and their distribution 
functions depending on the lifetime and characteristic size are characterized according to STARS 
(Sea Surface Temperature and Altimeter Synergy for Improved Forecasting of Polar Lows) data for 
the period 2002-2010 [1] (see also [2]). The STARS data are based on satellite infrared images 
obtained using the AVHRR (Advanced Very-High-Resolution Radiometer) instrument and 
characterize the parameters of polar mesocyclones over the waters of the Norwegian and Barents 
Seas with hourly resolution. 

Figure 1 characterizes the average number of PL for different months of the year according 
to STARS data (2002-2010). According to the analyzed data, PL are most often observed in March 
and January, more than 3 cyclones per month on average. The maximum interannual variability 
with a standard deviation of more than 2 cyclones is observed in March. In January, the process 
of PL formation is more stable, with a standard deviation of about 1 cyclone. By the beginning of 
summer, the probability of PL formation decreases to zero and increases at the beginning of the 
fall season, reaching its local maximum in November (about 2 cyclones per month). One should 
note the instability of the manifestation of the local maximum in November, i.e., the interannual 
variability is large. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. The average number of PL for different months of the year according to STARS data. 
Standard deviations are shown by vertical lines. 

Figure 2 shows estimates of the probability of PL according to the STARS data, depending 
on their characteristic size.  According to Fig. 2, the PLs with a characteristic size of about 200 
km are the most likely. 
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Fig. 2. The estimates of the PL probability depending on their characteristic size R (according to 
STARS data). 

Figure 3 presents estimates of the probability of PLs according to STARS data depending 
on their characteristic size.  According to Fig. 3, short-lived PLs with a lifetime of no more than 
12 hours are the most likely. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Estimates of the PL probability depending on their lifetime (according to STARS data). 

The features of the lifetime and characteristic dimensions of PLs for different months of 
the year are manifested. In particular, the biggest values of the average duration were noted for 
March and January - about 1.5-2 days. For the other months, the average PL duration is less than 
a day (including November, when the local maximum of the average lifetime appears). 

The analysis of PLs was carried out within the framework of the RSF project (19-17- 
00240). 
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1. Introduction 
 

Relationship of preceding winter/spring Eurasian snow with the Indian summer monsoon rainfall 

has been widely recognized.  However, previous studies have tended to mainly focus on the snow-

monsoon teleconnection using all-India averaged summer monsoon rainfall index (AISMR) (Bamzai 

and Shukla, 1999; Zhang et al., 2019), while devoting less effort to examining the regional features 

over India. Some of the earlier investigations that examined the spatial distribution of Indian rainfall 

association with antecedent Eurasian snow (Parthasarathy and Yang, 1995; Fasullo, 2004) were 

constrained by the coarse spatial resolution of rainfall data over India.  Snow-monsoon relationships 

are complex due to the significant spatio-temporal variations of both snow (Bamzai and Shukla, 

1999) and monsoon (Hrudya et. al. 2021). As a result, AISMR index is not appropriate to delineate 

the specific regions over India that are responsible for the well-known snow-monsoon relation.  

Recent multiple high-resolution gridded rainfall datasets along with the reanalysis datasets, provide 

prospects to appraise regional aspects of snow-monsoon link over India.  In the present study, we 

attempt to answer a question- Do European Centre for Medium-Range Weather Forecasts ERA5 

reanalysis data capture the spatial characteristics of snow-monsoon relation over India?  
 

2. Data 
 

Reanalysis: (i) Monthly rainfall and snow water equivalent (SWE) for the period 1980–2007 are 

obtained from the ERA5 reanalysis dataset at 0.25° spatial resolution (Hersbach et al. 2020).  

Observation: (i) Daily rainfall grid point data developed by India Meteorological Department (IMD) 

across the Indian landmass (Pai et al., 2014), (ii)National Snow and Ice Data Center (NSIDC) 

archived SWE data from Scanning Multi-channel Microwave Radiometer (SMMR) and Special 

Sensor Microwave/Imager (SSM/I) for the period November 1980-2007. This dataset has been 

enhanced using snow cover frequencies, and is gridded to the Northern and Southern 25km Equal-

Area Scalable Earth Grids (Armstrong et al., 2002). SWE is hereafter referred to as snow. 
 

3. Results 
 

The analysis in the study is conducted for 1980-2007 due to availability of NSIDC SWE data for 

this period.  The seasonal averages are defined as: December to March of the following year (DJFM) 

as winter season, April-May (AM) as spring season and June-September (JJAS) as summer monsoon 

season.   Correlation coefficient (CC) between snow averaged over Eurasian domain (50- 70°N; 20-

140°E) and the ensuing summer monsoon season rainfall at each grid point over India using ERA5 

and corresponding observed data (OBS) is illustrated, both for winter (Fig.1a-b) and spring (Fig.1c-d) 

snow respectively.  CC between snow and rainfall over India (Fig.1) is hereafter referred to as snow-

monsoon relation.  Winter snow-monsoon relation (OBS) (Fig.1b) is characterized by a 'Negative-

Positive-Negative' (NPN) tri-polar spatial structure demonstrated as significant negative CC over the 

northern and south-western regions of India as well as over the parts of peninsular India, whereas 

positive CC is observed over east-central India.  Spring snow-monsoon (OBS) relation (Fig.1d) is 

substantially weak and also the regional features vary from winter snow-monsoon (OBS) relation 

(Fig.1b).  The tri-polar pattern of winter snow-monsoon (OBS) (Fig. 1b) relation is captured in ERA5 

(Fig.1a), although regions with significant CCs and their spatial extent in ERA5 markedly deviates 

from that of corresponding observation. Although the spring snow-monsoon (OBS) relation (Fig.1d) 

is substantially weak, it is robust in ERA5 (Fig.1c) with tri-polar spatial pattern consistent with the 

winter snow-monsoon (ERA5) relation (Fig.1a).   
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Figure 1: (a) Correlation coefficient (shaded) of ERA5 summer monsoon (JJAS) rainfall at each grid 

point over India and neighbourhood with the preceding winter (DJFM) snow averaged over the region 

of Eurasia [20°-140°E, 50°-70°N], based on 1980-2007.  

(b) Same as (a) except with IMD observed rainfall data at each grid point over Indian main land and 

satellite snow (NSIDC) data.  

(c) Same as (a) except with preceding spring (AM) snow.  

(d) Same as (b) except with preceding spring (AM) snow. 

Black solid contours represent significance at 95% confidence level. 
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Data from the infrared channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) provides a
convenient satellite way of detecting and analyzing deep convective clouds during both daytime and
nighttime. It is the primary instrument of the geostationary satellite Meteosat-11, which has a sampling
distance of 3-5 km depending on the longitude and latitude of the observed area, and a temporal resolution of
15 min. Motivated by the problem of forecasting hazards for aviation, this study presents a comparison of four
different detection algorithms designed to detect deep convective clouds, which will be referred to as
convective objects (COs).

The quality of each algorithm is evaluated on data for the period July 14-16, 2020. The analysis was
conducted using the measurements of brightness temperature in the following infrared window channels: 10.8

- , 6.2 – , 7.3 – . The region of interest was confined between 30° and 70° latitude,µ𝑚 𝑇
10.8

µ𝑚 𝑇
6.2

µ𝑚 𝑇
7.3

20° and 75° longitude. The dataset consisted of 288 observations, each one being a set of three images (one
image per channel).

Algorithm 1. Thresholding criteria included critical brightness temperature values - that is, pixels with
brightness temperature below 233 K as well as temperature differences and𝑇

10.8
(𝑇

6.2
− 𝑇

10.8
) (𝑇

6.2
− 𝑇

7.3
)

above -10 and -4 K correspondingly were selected [1]. Furthermore, since the shape of deep convective cloud
boundary as viewed from outer space is typically convex [2], we also used an additional convexity criterion
based on solidity index [3]: the ratio of CO area to the area of its convex hull must be above 0.7.

Algorithm 2. Assuming that the temperature of a deep convective cloud top is at least as low as 220 K [4], we
added one more criterion to the ones mentioned before: a candidate object must have at least one pixel with
brightness temperature below 220 K in order to be considered a CO.𝑇

10.8

Algorithm 3. The previous algorithm was augmented with the variable thresholding technique applied to IR
10.8 channel: if a candidate object did not meet the convexity criterion mentioned above, the critical value
was iteratively lowered (which caused the object to shrink in size and change in shape) until it did or until a
maximum number of iterations was reached.

Algorithm 4. An approach proposed by K.M. Bedka [5]. It takes into account not only the brightness
temperature at a given pixel, but also the mean of its neighbours and standard deviation from that mean.𝑇

10.8

The detections were validated using the distributions of two parameters: CO lifetime defined as the number of
successive steps at which the same CO was detected (converted to time in minutes through multiplication by
15); and CO maximum area defined as the maximum size in reached by that CO during its lifetime (see𝑘𝑚2

Table 1). The analysis revealed that Algorithm 1 detected a large number of small short-lived COs, i.e. those
with lifetimes less than one hour and areas less than 310 . Hence, it is applicable to the task of detecting𝑘𝑚2

weak convection as it occurs frequently under unstable atmospheric conditions. In the meanwhile, the stricter
criteria of Algorithm 2 enabled it to detect significantly fewer small short-lived COs, since the tops of the
most of them were warmer than the defined threshold of 220 K. As a result, the detected objects were more
powerful, had a bigger size and a longer lifetime. COs detected by Algorithm 3 were more numerous due to
the variable thresholding technique, which increased the chances of an object to meet the convexity criterion.
Algorithm 4 distinguished itself by the greatest number of detected COs of all sizes and lifetimes. It can
extract valuable information from IR 10.8 channel alone as it considers spatial brightness temperature
gradients. However, among the detected COs there were too many small objects that lived for less than one
hour as well as some big ones with distorted contours (see Figure 1). Given that images studied by Bedka had
a higher resolution, we conclude that this algorithm requires calibration to yield adequate results on our data.

This research was carried out as part of a collaborative project between Russia and Belarus.
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Figure 1. Examples of contours (in red) of COs detected by the algorithms, color-enhanced IR 10.8 channel
data as a background, UTC 00:00 2020-07-14

Table 1. Frequency of COs detected by the algorithms, grouped by lifetime and area

Area ( )𝑘𝑚2 Lifetime (hours) Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
25-80 < 1 7492 415 1103 11151

1-6 10 1 2 9
80-310 < 1 2217 108 263 5642

1-6 3 1 1 89
310-700 < 1 729 77 222 1891

1-6 9 6 8 110
6-12 0 0 0 1

700-100000 < 1 540 195 260 1110
1-6 84 37 58 369
6-12 4 4 5 34
12+ 0 0 0 4

100000-200000 6-12 1 1 0 0
12+ 0 0 1 0
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To characterize the influence of atmospheric blockings in formation mechanism of 
heat and cold waves a joint analysis of atmospheric blockings and heat/cold waves was 
carried out for the Northern Hemisphere basing on ERA-Interim reanalysis data for the 
period 1979–2019. Heat (for summer season) and cold (for winter season) waves were 
detected using the criterion proposed in [1], with the necessary condition for its fulfillment 
for at least 3 consecutive days and for the area at least 6´105 km2. The criterion proposed in 
[2] was used as a local blocking condition in this work, with the necessary condition for its 
fulfillment for at least 5 consecutive days. Blockings and heat (cold) waves were considered 
to be associated if the distance between centers of blocking and heat/cold wave was less 
than 15° of longitude and blocking and heat/cold wave took place at the same time. 

Figure 1. Interannual variations of the fraction (%) of heat and cold waves associated with blocking 
events. 

Figure 1 and Table 1 show the fraction of heat (cold) waves associated with blockings 
during the 1979– 2019 period in the Northern Hemisphere and two sectors: 0°–30°E and 30°–
60°E (only in Table 1). The estimates obtained show that on average about 80% of summer heat 
waves are associated with blockings. In winter on average about 60% of cold waves are 
associated with blockings. 



Table 1. Number of total and blocking-associated heat and cold waves in the Northern Hemisphere 
and sectors 0°–30°E and 30°–60°E for the period 1979–2019. 

Heat waves, Summer Cold waves, Winter 

Number of events NH 0–30E 30–60E NH 0–30E 30–60E 

With blockings 59 15 16 41 11 13 

Total 76 20 22 68 17 24 

Part of blocking- 
associated events 

78% 75% 72% 60% 65% 54% 

Figure 2 shows the intensity of blocking-associated summer heat waves in dependence on 
blocking duration in the Northern Hemisphere and two sectors (0°–30°E and 30°–60°E) for the 
period 1979–2019. 

Figure 2. Intensity of blocking-associated summer heat waves in dependence on blocking duration 
in the Northern Hemisphere and sectors 0°–30°E and 30°–60°E for the period 1979–2019. 

According to Fig. 2 the relationship between the duration of blockings and the intensity of 
the heat wave in the period 1979–2019 did not change significantly, except for the case of a 
record blocking duration and record heat wave intensity in the summer of 2010 in the European 
part of Russia. 
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