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Introduction

The experience of fog in nature is as ethereal as it is challenging to capture in observations and numerical
forecast models. Visibility is a measure of fog that is readily diagnosed from surface humidity, but seemingly
not without bias. Gultepe and Milbrandt (2010) provide one parameterization that Danielson et al. (2020)
use to explore 21st century regional trends in marine visibility. Following an approach that can be described
as conventional, all linear adjustments developed in that study assume that the forecast model is further
removed from reality than observations (i.e., in every way). By contrast, one may also question whether
an analysis (specifically, parameterizations of visibility applied to an analysis that benefits from a forecast
model and observations) can be considered in various ways better than, equivalent to, as well as worse
than an observational proxy of reality. An emphasis on forecast model strengths that are complementary
to the strengths of observations is an important proposition of Parker (2016). Oreskes et al. (1994) and
Beven (2019) provide further motivation for the philosophical challenge of whether to accommodate an
error of representation associated with the forecast model (or analysis) that is equivalent to an error
of representation associated with the observations (cf. Daley 1991). It is important to acknowledge that
representation error is a misnomer here, insofar as its inclusion provides a better representation of visibility.

An Updated Linear Regression

It is only by longstanding convention that historical marine visibility observations are recorded (i.e., as
one of ten categories). Further standardization of these measures is not anticipated (cf. World Meteoro-
logical Organization 2017), but at least one may take them as a good indication of the presence or absence
of fog. The same might be said of estimates of visibility derived from numerical forecast data. Although
both estimates are exploratory, comparisons are also instructive. A nascent approach to comparing such
measures (with no one dataset assumed to be uniformly better) is given by Danielson (2018). Our up-
date focuses on a canonical (yet imperfect) measurement model, or linear regression framework (Danielson
et al. 2020). If any dataset is a partial measure of truth with error, then a numerical translation from
uncalibrated (U) to calibrated data (C) can be represented by an additive (αU ) and multiplicative (βU )
adjustment, where

C
U

=
=

αU + βU t+ ε+ εC
αU + βU t+ ε+ εU .

(1)

We describe t as a linear association that is only partially shared by both datasets, and hence, linear
calibration can be only partial as well. An interesting consequence of equation (1) is that the covariance
between C and U (e.g., between in situ and gridded estimates of visibility) also involves nonlinear asso-
ciation. From a metrological point of view, equation (1) is a canonical expression of errors-in-variables
linear regression (Fuller 2006; Dunn 2011), except that it allows Fuller’s equation error (ε, the nonlinear
association term) to be shared between two different datasets. The interpretive consequences of adding
such a term are not yet fully understood, but with the benefit of well sampled data (Danielson 2018),
relatively direct numerical solutions of (1) are available.

Conclusions

A linear calibration of forecast model output helps to reveal consistent decreasing trends in 21st century
marine visibility (Danielson et al. 2020). Given the use of a conventional visibility parameterization, these
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trend estimates take in situ observations as a perfect reference. While this is consistent neither with
equation (1) nor with the subjective nature of marine visibility observations, it provides a useful baseline
and is easy to interpret. However, there seems to be a gap in our ability to interpret a seemingly simple
linear calibration when this involves measurement error in both visibility datasets. Thus, we have begun
to explore more than just linear calibration and to accommodate an interpretation of more than just
measurement error among ε, εC , and εU . Idealized control experiments are also being explored.
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1. Introduction

The Brazilian meteorological community has few model ver-
ification tools following the World Meteorological Organization
(WMO) recommendations. The National Institute for Space
Research (INPE), Center for Weather Forecasting and Climate
Studies (CPTEC) operational Numerical Weather Prediction
(NWP) center is providing operationally the Community Sys-
tem for Evaluation of Numerical Weather and Climate Predic-
tion Models – SCANTEC (from the acronym in Portuguese to
Sistema Comunitário de Avaliação de modelos Numéricos de
Tempo E Clima – de Mattos and Sapucci 2017) in order to
contribute with the improvement of model quality assessment.
SCANTEC project aims to offer for the community and op-
erations a unified, standardized, and flexible tool for forecast
verification.

The SCANTEC project is under management in a flexible
institutional project management web application at CPTEC.
SCANTEC Version 1.0 includes traditional measures for cat-
egorical and continuous variables, like the Root Mean Square
Error (RMSE), bias, and Anomaly Correlation (AC). Besides,
the package provides advanced spatial forecast evaluation tech-
niques in research mode, like the Method for Object-based Di-
agnostic Evaluation (MODE). SCANTEC advantages span in
the flexible integration of modeling systems employed by dif-
ferent institutions in Brazil, or different versions of the same
modeling system. SCANTEC is also flexible to receive new
statistical metrics (de Mattos and Sapucci 2017).

This paper aims to describe the main components of
SCANTEC and its potential as an open-source, community-
based development software for model verification. Section 2
presents the basic structure of SCANTEC Version 1.0, in which
the main features are described. Section 3 presents the statisti-
cal metrics available, and finally, Section 5 describes the plan-
ning of future developments, including the capability for broad
use in supercomputing environments and future applications.

2. Basic structure of SCANTEC

SCANTEC is a system based on open-source tools and can
be run on different operating systems, such as UNIX, Linux,
Windows, and macOS. The system structure includes a ker-
nel fully modular to facilitate the implementation of new fea-
tures. The kernel is developed in Fortran 2003 programming
language, following the ANSI standard. Besides, SCANTEC is
userfriendly and configurable through American Standard Code
for Information Interchange (ASCII) files. The main compo-
nents of SCANTEC are illustrated in Figure 1.

SCANTEC was designed by software development practices
that encourage the reuse and community sharing of algorithms

∗Corresponding author address: João Gerd Zell de Mattos,
Center for Weather Forecasting and Climate Studies, Rodovia
Presidente Dutra Km 40, Cachoeira Paulista, SP, Brazil
E-mail: joao.gerd@inpe.br

Fig. 1. The main components of SCANTEC.

among the scientific community. The components were de-
signed as functional abstractions using flexible object-oriented
programming paradigms to facilitate reuse and the develop-
ment of future implementations. Interoperable features in
SCANTEC also include reuse and joint development with other
numerical modeling groups. Similar to the nature of object-
based in structured programming, SCANTEC provides stan-
dard functionalities for model evaluation and allowing the user
to fill variable functionalities according to their needs. The
number of variable functionalities in SCANTEC includes inter-
faces to facilitate the incorporation of (1) domains, (2) numer-
ical models interfaces, (3) types of observations, and (4) sta-
tistical methods for evaluation. A set of abstract functions are
incorporated to represent the variable functionalities. These
interfaces called ”plugins” (model-plugins, obs-plugins, stat-
plugins), contain access points or extensible interfaces to in-
corporate routines to read new models and statistical metrics
not included in the stat-plugins component. The model-plugin
component is responsible for model data reading; obs-plugin is
responsible for the reference dataset reformatting and access
a dataset server, and stat-plugin performs the computation of
statistical metrics; visualization and post-processing tools pro-
vide iterative access to SCANTEC products.

3. Statistics and visualization

SCANTEC includes two modules that perform statistical
computations: Method For Object-Based Diagnostic Evalua-
tion (MODE) and basic-statistic. Both are components of stat-
plugin. The basic-statistic module includes standard statistical
metrics for comparing forecasts and grid point references. This
functionality is suitable for comparing model outputs with its
analysis, and also perform intercomparison between different
models or experiments performed with the same model. In ad-
dition to MODE, SCANTEC also offers methods for dichoto-
mous forecast evaluation, extracting information from the con-
tingency table after considering, for the precipitation field, cer-



tain thresholds commonly used by the community. The metrics
available in Version 1.0 are: Anomaly Correlation (CC), Root
Mean Square Error (RMSE) and Mean Error (ME), metrics for
specific precipitation assessment such as frequency histogram
and contingency table.

SCANTEC produces an output file in ASCII, which contains 
the average statistical results on the selected domain as a func-
tion of lead time or time of day. A file in a sequential binary for-
mat is produced, containing the statistical results for each grid 
point of the domain and period. SCANPLOT tool performs the 
visualization of statistics tables provided by SCANTEC. This 
tool consists of a set of scripts written in Python, where graph-
ical outputs include visualization of statistics in the scorecard 
and Taylor Diagram format. Figure 2 shows an example of a 
scorecard provided by SCANTEC, highlighting the RMSE 
improvement in different variables and levels evaluated (Sapucci 
et al. 2016).

4. Spatial verification method

Traditional metrics are not sufficiently informative to eval-
uate numerical models, especially those with high horizontal
resolution. MODE is an object-based method to verify prop-
erties of spatial forecasts of entities, where an entity is any-
thing that can be defined by a closed contour (Ebert and
McBride 2000). This technique emulates the visual identifi-
cation of a forecaster analyzing the meteorological field, identi-
fying matched objects, and then comparing each other (Davis
et al. 2006, 2009). MODE has been implemented by (Car-
rasco 2017) and was applied to evaluate precipitation forecasts
and intercompare the Brazilian developments on the Regional
Atmospheric Modeling System (BRAMS) and the Weather Re-
search and Forecasting (WRF) Model (Carrasco et al. 2020).
Recent work at CPTEC has used MODE to identify and evalu-
ate forecasts of heatwaves predicted by two versions of BRAMS
model using ECMWF ERA5 reanalysis and GFS analysis as the
reference database (Garcia 2020).

5. Future developments

SCANTEC is a project in progress, and future developments
consider community needs and contributions. A graphical web
interface based on the Python Jupiter notebook tool is un-
der development, which should be migrated to a stand-alone
graphical interface. NetCDF (network Common Data Form)
format will be included as one of the data formats supported in
SCANTEC. Observational datasets provided in PrepBuffer and
ASCII, which include conventional data such as SYNOP, SHIP,
METAR, among others, will also be supported and included
in the list of references database available in obs-plugin. As
many centers work in a high-performance computing environ-
ment, parallel processing is desired for SCANTEC to provide
faster and more efficient statistical computation. To meet this
aim, the parallelization of SCANTEC is required and will be
available in future versions. Scientific applications restricted to
meteorological variables are considered to be extended to air
quality variables, as CPTEC is a producer of operational air
quality forecasting for South America, and recognizes the need
for an operational procedure for air quality forecasting verifica-
tion.

6. Summary and Conclusions

SCANTEC has been developed at INPE/CPTEC for use
by the internal community in NWP assessment. SCANTEC
Version 2.0 is under release in the operational CPTEC NWP
environment. The tool is applied to evaluate meteorological
variables and offers a flexible environment for user needs under
a userfriendly configuration to another modeling system other
than those currently available. SCANTEC has been applied

over the last year in scientific studies and is under the GNU
General Public License. As a community tool, SCANTEC is
open-source software that will be available to community con-
tributions to enhance the tool and keep it relevant for scientific
applications.
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port of the State of São Paulo (FAPESP). We acknowledge Dr.
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Fig. 2. Type of analysis provided by SCANTEC exploring
scorecard shows the gain in RMSE over South America after the
assimilation of radio occultation data. More detail about this
study is available in Sapucci et al. (2016).
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1. The UFS system for seasonal to subseasonal prediction 
The NCEP Environmental Modeling Center Unified Forecast System (UFS) is a community-based modeling 
system designed for weather and climate forecasting on global or regional scales. The configuration of UFS for 
seasonal to subseasonal timescales is currently under development; at present it consists of atmosphere, ocean, 
and sea ice component models, coupled through a NEMS mediator. The addition of a coupled global wave model 
(WAVEWATCH III) is planned in the near future. The atmospheric model in this system is composed of the Finite 
Volume Cubed Sphere (FV3) dynamical core with GFS physics and GFDL microphysics parameterization. The 
oceanic model is the Modular Ocean Model (MOM6), and the sea ice model is the Los Alamos Sea Ice Model 
(CICE5). Upgrades and bug fixes to the system components are constantly incorporated as model components 
are updated by community effort.  

2. UFS prototypes and benchmark framework 
As the system grows in maturity and complexity, a systematic monitoring of performance is needed to ensure its 
quality. As part of this monitoring, sequential system prototypes (identified by specific components, settings, and 
initial conditions) specified in the course of development are validated and verified within a fixed “benchmark” 
framework. This benchmark framework is designed to test system performance for each new prototype with a 
consistent structure and fixed metrics.  

The consistent structure is provided by requiring each prototype to produce a set of 35-day coupled forecasts 
initialized on the first and fifteenth day of every month between April 2011 and March 2018 for a total of 168 
forecasts. The length of this dataset is a balance between providing a sufficient length for statistical analysis and 
limiting the strain on computing resources. The chosen period for benchmark verification spans varying climate 
conditions, as it includes several El Niño and La Niña events, as well as recent years of both high and low Arctic 
ice extent. 

Since the model components are constantly being upgraded, it is not feasible to conduct a benchmark evaluation 
after every change. Instead, benchmark testing is performed at specific milestones of system development. To 
date, four prototypes, primarily targeting the impact of changing the source of initial conditions, have been defined 
and fully evaluated. The first prototype, UFS_p1, consisted of model components as described above, with the 
component versions current as of Oct 2018, and CFSR initial conditions for atmosphere, ocean, and sea ice 
initialization. For Prototype 2 (UFS_p2), the model components were updated to their then-current Mar-2019 
states, and the initial conditions for the ocean were replaced with the 3Dvar from the NCEP Climate Prediction 
Center (CPC) GODAS. For Prototype 3 (UFS_p3), the model components were updated to their Jun-2019 states, 
and additionally the sea ice initial conditions were replaced with an ice analysis developed by CPC. An additional 
intermediary Prototype 3.1 (UFS_p3.1) was created to assess the impact of the coding changes implemented 
between Jun 2019 and Jan 2020, with the same initial conditions as in UFS_p3. A separate prototype (UFS_p3.2) 
is in the process of being run for tests to document the impact of atmospheric initial conditions only, while holding 
the code base the same as in UFS_p3.1.  

3. Metrics 
The main benchmark verification metrics consist of bias, RMS errors and anomaly correlations (AC) for a set of 
surface and upper air fields by lead week. Anomalies are calculated with respect to a smoothly interpolated 
climatology calculated by fitting the 7-year time series to a sine wave of period 365.25 days plus three harmonics. 
The smoothly interpolated climatology is calculated in the same way for both forecast and verification fields, 
separately for each grid point and lead time. Verification is performed against the CPC global 0.5-degree Unified 
Rain Gauge data (for precipitation over land), 6-hourly analysis guess 6-hr predictions from operational CFSv2 
CDAS (for precipitation over ocean and upper air fields), CPC global 0.5 degree daily 2-meter temperatures, daily 
0.25-degree OSTIA SST analysis, 500-hPa geopotential 6-hourly analyses from the operational CFSv2 CDAS. 
Model and verification data sets are interpolated to a common resolution prior to anomaly calculations. In addition, 



 

MJO index RMM1 & RMM2, and bivariate correlation skill are calculated following Wheeler and Hendon (2004) 
and Lin et al. (2008). 

4. Results 
For brevity, we focus here on week 3 and 4 AC scores, as this is the lead time for which subseasonal forecasts 
hold the most unrealized potential. Skill at shorter lead times is larger for all benchmark comparisons, but the 
conclusions regarding relative performances are similar.  Beginning with the first prototype, the UFS system offers 
an improvement over the operational CFSv2 in terms of the week 3 and 4 AC scores for most fields (Fig. 1, left 
panel). The replacement of ocean initial conditions between UFS_p1 and UFS_p2 provided an additional skill 
improvement. The subsequent replacement of sea ice initial conditions between UFS_p2 and UFS_p3 did not 
have a beneficial impact for these scores for the fields shown here; it did however result in more accurate ice 
concentration threat scores (not shown). Little change was seen between UFS_p3 and UFS_p3.1. The lead time 
until the MJO bivariate correlation falls to 60% in the benchmark comparison went from 12 to 16.5 days between 
CFSv2 and UFS_p1, 19 days in UFS_p2, and 18 days in both UFS_p3 and UFS_p3.1 (Fig. 1, right panel, colored 
bars). These results are encouraging when compared to the individual models from the WWRP/WCRP sub-
seasonal to seasonal prediction (S2S) project (Fig. 1, right panel, grey bars; Vitart 2017) 

 
Figure 1.  Left: Weeks 3 and 4 anomaly correlation (%) for select fields from benchmark runs (Apr 2011-Mar 2018) of 
CFSv2 and UFS prototypes 1 through 3.1. Right: Forecast lead time (days) at which the MJO bivariate correlation falls 
to 60%. Colored bars represent benchmark runs (Apr 2011-Mar 2018) of CFSv2 and UFS prototypes 1 through 3.1. 
Grey bars represent control runs (i.e., not ensembles) from various S2S models for 1999-2010 (based on Vitart, 2017).  

 
Additional evaluations across prototypes demonstrate that ongoing developments have not altered the overall 
pattern of biases for most fields, and the prototypes are generally biased warm and wet. Across the lineup of 
prototypes, the largest boost in AC skill was associated with changing the ocean initial condition from CFSR to 
the 3Dvar CPC. AC scores for subsequent prototypes are comparable and remain an improvement over the 
operational CFSv2. This provides confidence in the system as components are refined; as system complexity 
increases, the reduction of biases and further skill improvement remain a target. It is likely that the greatest benefit 
for future performance is to be gained from planned component physics improvements and tuning, and advances 
in initializations, e.g., via land DA. 
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1. Introduction 
Forecasts of rapid intensification (RI) of tropical cyclones (TC) are still a challenge, in spite of 
improvements in track and intensity forecasts in the past decade. RI is a scenario where the intensity of a 
TC increases dramatically in a very short period of time. In practice, RI is defined as an increase in 
the maximum sustained winds of a TC equal to or greater than 30 knots (55 km/h) in a 24-hour period 
(Kaplan and DeMaria, 2003).  Improving the ability of NCEP hurricane models to forecast RI events is a 
top priority for EMC developers. Currently, the probability of detection (POD) and false alarm ratio (FAR) 
are routinely used to measure the performance of RI forecasts. POD of RI is quantified as a percentage 
of the total number of observed individual RI events which are correctly forecasted, while FAR of RI is a 
percentage of RI forecasts that were not RI events based on observations. While this method is effective 
in assessing the overall RI forecast performance of a model, it is not straightforward in revealing how well 
individual forecasts over a period of time (e.g., typically 5 days for mesoscale models) perform in 
capturing RI events. In other words, a POD may not be able to reflect how many 5-day forecasts 
successfully capture RI events. This is because there may be multiple RI events during a 5-day period. 
To this end, we proposed a new metric, which is based on the total number of RI events forecasted 
during the whole integration time in a model. This gives modelers a direct assessment of the number or 
percentage (i.e., success rate) of 5-day forecast cycles capturing some or all of RI events. With the new 
metric, we calculated success rates of RI forecasts in a 5-day period by NCEP HWRF in the past decade, 
showing the model is improving RI forecasts.  
2. Methodology 
The question we would like to answer is how many 5-day model integrations (cycles) can successfully 
capture one or more observed RI events based on best-track data. For a threshold of wind speed 

increase, RI events can be identified as binary (yes or no) 
every six hours during a 5-day integration period. The same 
procedure is applied to observational data (e.g., NHC best-
track data). Then one can compare the results from the 
model with observational data, and determine how many 
observed RI events have been captured by the 5-day 
forecast. To illustrate the method, Figure 1 presents an 
example of a 5-day time series of the maximum 10-m wind 
speed of Hurricane Lorenzo (2019) forecasted by the 
operational HWRF model initialized at 18 UTC, September 
24, 2019. RI events (with the threshold of 30 kt) are 
identified every 6 hours, denoted by blue crosses for 
observations and triangles for HWRF. The best-track data 
suggests RI cases occurred at 10 lead times (hours). RI 
cases predicted by HWRF occurred at 4 lead times. 

Triangles in red indicate that the occurrence times of RI events simulated by HWRF exactly match those 
of observations. In this example, RI cases at the 36th, 42nd, and 48th hours are successfully captured by 
HWRF. HWRF produced one false alarm prediction at the 54th hour and failed to capture RI at seven 
lead times (hours). 
Given the uncertainties in numerical models and errors in observations, multiple criteria or thresholds can 
be used to determine whether a 5-day forecast by HWRF is a success or not. Three criteria were tested, 
depending on what percentage of observed RI cases have been produced in a 5-day forecast by HWRF. 
The first requires that all observed RI cases must be forecasted by HWRF with matching RI occurrence 
times. This is a very strict criterion, particularly for multiple RI events occurring in a 5-day forecast period. 
The second is somewhat relaxed, and requires that half of observed RI cases are produced (with time 

 
FIG 1 Time series of maximum 10-m wind speed of 5-
day periods from a HWRF forecast (black line) and 
from observation data (blue line).   
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matching). The third is most relaxed criterion, requiring that at least one observed RI case is produced 
(with time matching). A false alarm RI cycle is defined as a 5-day forecast during which HWRF predicts 
RI events but there are no observed RI events in that period. A success rate is a percentage of total 5-
day periods with observed RI events successfully produced by HWRF. In addition, due to the fact that 
observation error in intensity can be greater than 5 knots, we used 20 and 30 knots as the thresholds of 
the increase in wind speed when determining RI cases for comparisons. 
 

 

 
FIG. 2  Success rates of 5-day forecasts predicting observed RI 
events of TCs in NATL basin by operational HWRF model from 
2010 to 2019. top: 20-kt as RI threshold , bottom: 30 kt. 

 

 
FIG. 3 as FIG. 2 except for TCs of EPAC basin. 

 
3. Results and discussion 
With the method described above, we computed success rates of 5-day forecasts for the North Atlantic 
(NATL) basin (Fig. 2) and East Pacific (EPAC) basin (Fig. 3) by the operational HWRF model over the 
past 10 years. Depending on the criterion, the fraction of the number of cycles producing observed RI 
events increases with years. The success rate is higher with a lower RI threshold. For the 30-kt RI 
threshold, as much as 40% of the cycles can predict at least one RI event during a 5-day forecast. This 
number increases to 60-70% for the 20-kt RI threshold. However, the success rate of cycles in predicting 
all observed RI events in a 5-day forecast (with the time matching requirement) is still very low, though 
there is an increasing trend in the NATL basin. Out of the total 5-day periods when observations did not 
show RI events, approximately 20% of forecasts (in the same period) predict at least one RI event, giving 
false alarms. This number is not changed much over the years. The improvement in success rate is 
attributed to yearly upgrades of the HWRF model, especially model horizontal resolution increases from 
9 to 1.5 km, and in the number of vertical levels from 43 to 75 km. Tuning and calibrations of parameters 
in the model physics schemes, PBL and convection schemes for example, also play a key role in the 
improvement of the intensity and intensity change forecasts. We also calculated the intensity RMS error 
and bias during RI events each year for the NATL basin, showing that mean bias is significantly reduced 
with time from –18kt (2009) to –8 kt (2019), though RMS error curve is flat at approximately 20 kt. 
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1. Introduction 
In addition to the tropical cycle (TC) track and intensity forecast guidance at 6-hourly synoptic times valid 
at 00Z, 06Z, 12Z, and 18Z provided in Automated Tropical Cyclone Forecasting (ATCF) format, the 
operational Hurricane Weather Research and Forecast (HWRF) model also provides high-frequency 
tropical cyclone forecast (HTCF) output at every model time step of the innermost domain (10/3 seconds). 
The variables in the HTCF output include magnitude and location (latitude/longitude) of 10-meter 
maximum wind speed (Vmax), minimum sea level pressure (Pmin), and radius of maximum wind (RMW). 
In this study, a statistical analysis is performed on the high-frequency output from the operational HWRF 
forecasts of track and intensity for all TCs in the North Atlantic basin for a 3-year period (2017-2019). The 
results show that there are large temporal fluctuations and uncertainties in the high-resolution TC track 
and intensity that is not captured by the conventional (six-hourly) forecast guidance provided to the TC 
forecast centers. Running means at various time windows are applied to the high frequency track and 
intensity forecast data from the model output to study their statistical characteristics. The analysis 
demonstrates for the first time that the operational HWRF model is capable of producing the high 
frequency trochoidal TC motion seen in observations. The TC track and intensity verification indicates 
that the +/- 3-hour and 4.5-hour running means of the high-frequency intensity outputs are ~5% more 
skillful than the standard 6-hourly HWRF intensity forecasts, while the skill for the track forecast is 
comparable between the two methods.  
2. High-Frequency Track and Intensity Analysis 
Track forecasts using the high-frequency internal tracker and the 6-hourly external tracker are compared 
with one and another and with observations for Hurricane Florence initialized at 0000 UTC 09 September 
2018, Figure 1a. Observations include the observed best track and high-frequency (2-min) track 
observations. Fig. 1a represents typical characteristics of high-frequency HWRF track output and clearly 
shows the small-scale oscillation of trochoidal motion, which rotates counterclockwise around the 6-
hourly TC tracks. Trochoidal TC motions have been previously observed in radar observations (Marks et 
al. 2008). Fig. 1b shows the temporal fluctuations of the TC intensity forecasts for Hurricane Florence. 
TC intensity is compared between the HWRF external tracker (every 6 h), the HWRF internal tracker at 
every model time step (10/3 s), plus 10-, 60-, and 360-minute running averages, and the best track. 

                          

 
Fig. 1 a) HWRF track forecasts for Hurricane Florence 06L, 20180909 00UTC (left). Two forecast tracks and two observed tracks are 
displayed the operational HWRF track forecasts (red), HWRF high-frequency track (blue), observed. b). HWRF intensity forecasts for 
Hurricane Florence 06L, 20180909 00UTC (right) panel. 
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3. Verification 
The track and intensity forecast skill are compared between the operational HWRF, and 6h- and 9h- 
running means of high frequency. It is found that track forecast skill was similar at all forecast lead times 
for the operational HWRF, 360M, and 540M (not shown). This result was expected because small 
temporal scale trochoidal motion uncertainties are removed by using sufficiently long running mean 
windows. At early forecast lead times, 540M shows a 3% track skill improvement over the operational 
HWRF. On the other hand, intensity verification shows quite different results. The intensity forecast skill 
for both 360M and 540M show at least a 3% improvement over the operational HWRF Vmax forecasts 
at all lead times. 

      

 
 

 
 
4. Conclusions 
The analysis demonstrates for the first time that the operational HWRF is capable of producing the 
trochoidal TC motion in the high-frequency TC tracks seen in observations. The high frequency 
fluctuations of predicted TC tracks show trochoidal motion with a rotational period of ~1-hour in the 
temporal scale and ~20-100 kilometers in the spatial scale. The fluctuations that lead to large 
uncertainties in the 6-hourly model track and intensity forecast guidance are estimated. It is found that 
the uncertainties in model track forecasts are small enough to have no impact on the verification against 
the best track. On the other hand, the high frequency fluctuations of Vmax present some uncertainties in 
the 6-hourly intensity forecasts. Removing temporal intensity uncertainties results in a ~3-5% 
improvement in TC intensity forecasts, compared to the standard 6-hourly HWRF forecasts. 
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FIG. 2 Comparisons of intensity (left) and 6h intensity change (right) forecast skill for all cycles,  the operational HWRF (HWRF, blue line), 
running mean of high frequency over +/-3-hour time window (360M, red line), and running mean of high frequency over +/-4.5 hour time 
window (540M, green line).  

 


	BB_20_S10_ini
	BB_19_S10

	010_Danielson_Richard_Linear_Calibration,_Climate_Change,_Marine_Fog
	010_de_Mattos_João_Gerd_Zell_SCANTEC__A_Community_System_for_Model_Verificaion
	010_Stefanova_Lydia_UnifiedForecastSystem
	010_Wang_Weiguo_HurricaneRapidIntensification
	010_Zhang_Zhan_HurricaneTrackIntensity

