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1. Introduction 
In winter, convective clouds sometimes develop and cause local snowfalls and lightning strikes in the Kanto 

plain in Japan. To understand and forecast these winter convective clouds, temporally high-resolution analysis of 

environmental conditions is required. Recently, in order to understand temporal variations of thermodynamic 

conditions of convective clouds, one-dimensional variational (1DVAR; Araki et al., 2015) analysis combined with 

numerical weather model and microwave radiometer (MWR) data has been applied into the cases of convective 

clouds causing a tornado in spring (e.g., Araki et al., 2014) and causing local heavy rainfalls in summer (e.g., 

Araki et al., 2017) in the Kanto plain. In this study, we performed a case study on the winter convective clouds on 

26 January 2019, and examined the temporal variation of environmental conditions and features of convective 

clouds by using Japan Meteorological Agency (JMA) analysis data, dense surface meteorological observation data, 

Himawari-8 data, JMA operational radar data, disdrometer and MWR data obtained at the Meteorological 

Research Institute (MRI) in Tsukuba, Ibaraki. 

 

2. Temporal variation of thermodynamic environment of winter convective clouds 
In this study, a ground-based multi-channel MWR (MP-3000, Radiometrics) installed at the MRI in Tsukuba 

(36.05N, 140.13E) is used for analysis of atmospheric environments and microphysical properties of convective 

clouds. The MWR measures the brightness temperatures of 21 K-band (22–30 GHz) and 14 V-band (51–59 GHz) 

microwave channels with the band width of 300 MHz in zenith direction. Vertical profiles of atmospheric 

temperature and water vapor density were retrieved by the 1DVAR (Araki et al., 2015) technique combining the 

MWR observation data and the results of the JMA Non-Hydrostatic Model (NHM) simulations. A rain sensor is 

combined with the MWR, and the MWR data at the time of rain was not used for the retrievals. A numerical 

experiment was performed using the NHM with a horizontal grid spacing of 1 km and a model domain of 

500x500 km covering the Kanto plain, and the 18-hour atmospheric conditions were simulated from 06:00 JST 

(=UTC+9h) on 26 January 2019. The initial and boundary conditions were taken from the 3-hourly JMA 

mesoscale analyses, and other setups were the same as those used in Saito et al. (2006). The NHM-derived vertical 

profiles at Tsukuba were interpolated to MWR observation times and used for the 1DVAR retrievals. In this study, 

the data of a micro rain radar (MRR, METEK) and a disdrometer (Parsivel, OTT) installed at the MRI were also 

used for the analysis of cloud microphysical properties of the convective clouds. 

On 26 January, the surface pressure pattern was the winter monsoon type and the upper cold vortex moved to 

the northern Japan. Since the Kanto plain was located on the southeastern side of the cold vortex, synoptic 

condition was favorable for convection development in the Kanto plain. In respect of the mesoscale environments, 

the low-level convergence line was formed in the Kanto plain by west-northwesterly and northerly airflows that 

crossed the mountain areas (Fig. 1). The Himawari-8 infrared images captured the cloud street associated with the 

convergence line from 13:30 JST, and radar echoes of convective clouds were observed by the JMA Tokyo radar 

from 14:40 JST. Two convective clouds developed in the convergence line and passed over Tsukuba from about 

15:30 to 16:30 JST. The results of the MRR showed the existence of echo at the altitude of 3–5 km 5–10 minutes 

before the surface precipitation (Fig. 2a). The disdrometer observed precipitations by two convective clouds from 

15:34 to 15:44 JST and from 16:03 to 16:32 JST, and liquid water path (LWP) derived by the MWR significantly 

increased about 20 minutes before the surface precipitation by the first convective cloud. 

To investigate the temporal variation of thermodynamic environments, variations of following stability indices 

calculated from 1DVAR-derived thermodynamic profiles were examined; precipitable water vapor (PWV), lifted 

condensation level (LCL), level of free convection (LFC), equilibrium level (EL), convective available potential 

energy (CAPE), Showalter stability index (SSI), lifted index (LI), and K index (KI). The LCL, LFC, EL and 

CAPE were calculated under the assumption that the air parcel averaged over 0–500 m altitudes was lifted. From 

the comparison of PWVs derived from 1DVAR, NHM, and the JMA local analyses, it was indicated that the 

1DVAR technique overperform the results of the NHM simulations in the water vapor field and that results of 

1DVAR would contain errors due to water clouds from 15:00 to 17:00 JST. As the results, EL increased from 

09:00 to 15:00 JST significantly, and LCL and LFC showed similar trends (Fig. 3a). The values of CAPE were 

100–900 J kg-1 before the surface precipitation in Tsukuba (Fig. 3b). Indices of SSI, LI, and KI also showed that 

thermodynamic environments significantly became unstable before the precipitation in Tsukuba. From the results 

of temporal variations of retrieved PWVs, low-level and upper temperature fields, it was found that the 

thermodynamic environments became unstable until 15:00 JST because of the increases of low-level atmospheric 

temperature and influence of upper cold air flow. 

 



3. Conclusions and remarks 
  In this case, the thermodynamic environments, which were obtained from the 1DVAR technique combined with 

the MWR data and numerical simulation data, showed unstable atmospheric conditions favorable for the 

convective cloud development in the Kanto plain prior to the other observations of cloud and precipitation by 

satellite and radar. These results suggest that the 1DVAR technique using MWR data would be of benefit in 

nowcasting winter convective clouds causing local snowfalls and lightning strikes. It is desired that the 

applicability and effectiveness of the 1DVAR technique in the other winter cases are examined in the future. 

 

  

  

 
Figure 3. Temporal variations of stability indices of (a) LCL, LFC, EL, (b) CAPE, (c) SSI, LI, and (d) KI calculated by 

atmospheric thermodynamic profiles derived from the 1DVAR technique. 
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Figure 2. (a) Time-height cross sections of reflectivity 

derived from MRR and (b) time series of precipitation 

intensity (mm h-1; red line) derived from the disdrometer 

and LWP (mm) obtained from the zenith observation by 

the MWR at the MRI in Tsukuba. 

Figure 1. Surface air temperature (gray) and wind (barb) at 

15:00 JST derived from the JMA stations and the 

Atmospheric Environmental Regional Observation System 

of the Japanese Ministry of the Environment. The PPI 

reflectivity (color) observed by the Tokyo radar at the 

elevation angle of 1.1 at 15:32 JST. 
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Soil moisture is one of the components of water balance in nature. Traditionally, during the growing 

season of agricultural crops, hydrometeorological stations evaluate (see e.g. Fig.1) the amount productive 

moisture located in the layers 0-10, 0-20, 0-50 and 0-100 cm.  

We also use information from polar orbital MetOp-A and MetOp-B satellites (and are going to add the 

information from MetOp-C) with measuring devices – scatterometers ASCAT. Their measurements permit to 

evaluate humidity in the upper (about 5-cm) soil layer, using remote sensing (ERS). The data is quickly 

distributed to the meteorological center via the system of data exchange EUMETSAT. We use (see [1]) both 

types of the information for our daily operative objective analysis (OOA) of soil productive moisture in the 

top (0-10 cm) and arable (0-20 cm) soil layers, see Fig.1. A considerable part of Russian agricultural areas are 

located in the European territory, and there is a rather a dense network of Roshydromet stations making 

observations of the reserves of soil moisture 3 times a month. 

Here we compare the fields of our OOA and meteorological fields valid at the same time. We compared 

the data on soil moisture in the arable layer and precipitation. Days with heavy (more than 20 mm/day) rains 

were studied here. It was expected that on such days the following "jump" of soil moisture as a function of 

time would be most evident. Indeed, the soil moisture content increased in about 75% of cases, but it decreased 

in about 25% of cases. The interaction of the solid part of soil and water, as well as the movement of moisture 

in the soil can explain this phenomenon. Fig. 1 shows an example of the soil moisture for July 22 2018 and 

Fig. 2 presents the day-to-day dynamics of soil moisture at the hydrometeorological station Pochinok 

(Smolensk region). 

 

 

 

Fig.1. The daily OOA 

change of productive 

moisture (mm) in the 

soil layer [0, 20 cm] on 

July 22 day 2018 

(color). The numbers 

on the map show the 

amounts of 

precipitation (mm) 

that fell during the day 

 

The moisture movement within the soil depends on the soil humidity. A.A.Rode [2] marks out several 

categories of forces, which affect the moisture contained in the soil. They are a) gravity (gravitational forces); 

b) capillary (meniscal) forces or forces of superficial pressure; c) sorption forces, representing a combination 

of attractions between water molecules and their attraction to soil particles; d) osmotic forces, representing 

attraction between ions and molecules in the solution and from exchange soil cations. Gravitational forces are 

constant and always directed down, other forces strongly depend on moisture content in the soil and can have 



 

 

any direction. When the soil humidity increases, first the adsorptive forces act, trying to approach the 

maximum adsorptive moisture capacity. Only then, the sorption comes into effect. With humidity increasing 

and sorption weakening, the capillary forces enter the game. Further, sorption and gravitational forces become 

commensurable. In this connection, forces of all these three categories can affect together the moisture 

movement during this interval. Thus, while soil humidity increases, the forces acting on moisture within the 

soil decrease. 

 

 

Fig.2. Dynamics 

of OOA of 

productive 

moisture of the 

top soil layer [0, 

20 cm] and the 

amount of 

precipitation at 

the 

hydrometeorolo

gical station 

Pochinok 

(Smolensk 

region). 

 

Therefore, a "jump" of humidity, as a function of time, only in days before which no precipitation was 

observed.  

If even slight rains fell during the preceding period thus filling the soil with moisture, no humidity increase 

in the top soil layer is observed, since the moisture arriving on the soil surface will flow down into underlying 

layers. 

We investigated also the days with hot dry wind (more exactly: the deficiency of partial pressure of water 

vapor exceeded 20hPa, and the maximum speed of the surface wind was more than 15 m/s). Under such 

conditions, the top soil should lose moisture quickly. According to the OOA, a decrease in humidity in days 

with hot dry winds was not observed except for cases with preceding soil desiccation (relative humidity <20% 

of the top soil). 

Thus, our OOA of productive soil moisture based on the land and satellite observations allows to explain 

day-to-day variability and to evaluate adequately intra soil moisture fluxes. 

Ph.L.Bykov and V.A.Gordin were supported by Academic Fund Program at the National Research 

University Higher School of Economics (HSE) in 2018 – 2019 (grant № 18-05-0011) and by the Russian 

Academic Excellence Project «5-100». 

 

Literature 

1.  Ph.L.Bykov, E.V.Vasilenko, V.A.Gordin, L.L.Tarasova, Statistical Structure of Topsoil Moisture from 

Ground-Based and Satellite Data. Russian Meteorology and Hydrology. 2017. No.6, pp. 403–414. 

2. A.A. Rode Issues of water regime of soils. Leningrad, Hydrometeoizdat, 1978 (in Russian). 213 p. 

3. L.D. Baver 1948. Soil Physics. 2nd Edition. John Villey & Sons Inc. New York. 398 pp. 

4. D. Hillel 1998. Environmental Soil Physics: Fundamentals, Applications, and Environmental 

Considerations. Academic Press, Oval Road, London, UK. 775 pp. 

 

0

20

40

60

80

15

20

25

1
8-
Ju
l-
18

1
9-
Ju
l-
18

2
0-
Ju
l-
18

2
1-
Ju
l-
18

2
2-
Ju
l-
18

2
3-
Ju
l-
18

2
4-
Ju
l-
18

2
5-
Ju
l-
18

th
e 

am
o
u

n
t 

o
f 

p
re

ci
p

it
at

io
n

, m
m

h
u

m
id

it
y
 o

f 
th

e 
to

p
 l

ay
er

 o
f 

so
il

, 
m

m

Pochinok (Smolensk region)

the amount of precipitation per day top soil moisture



Data Assimilation in the Next-Generation Global Prediction System Era: 

Initial Implementation of FV3-based Global Forecast System  

Daryl Kleist (NOAA/NWS/NCEP/EMC) & Catherine Thomas (IMSG @ NOAA/NWS/NCEP/EMC) 

Email:  daryl.kleist@noaa.gov & catherine.thomas@noaa.gov 

As part of the Next-Generation Global Prediction System (NGGPS), the National Centers for Environmental 

Prediction (NCEP) is replacing the spectral dynamical core of the Global Forecast System (GFS) with the Finite-

Volume Cubed-Sphere Dynamical Core (FV3) of the Geophysical Fluid Dynamics Laboratory (GFDL). The initial 

implementation of the FV3-based GFS is focused on incorporating the FV3 core into the existing infrastructure and 

is tentatively scheduled to go operational in June 2019. 

The operational GFS and global data assimilation system (GDAS) utilize a Gridpoint Statistical Interpolation (GSI)-

based hybrid 4D Ensemble-Variational solver (4DEnVar, Kleist and Ide, 2015). The system uses a dual resolution 

configuration, with a deterministic component at T1534 (~13km) horizontal resolution and an 80 member ensemble 

run at T574 (~35km) horizontal resolution, all which utilize 64 hybrid sigma-pressure vertical layers and a model 

top of ~55km. The ensemble is updated every cycle utilizing the ensemble square root filter (EnSRF) of Whitaker 

and Hamill (2002). The hybrid 4DEnVar deterministic analysis is performed on the ensemble grid and is used to 

replace the EnSRF analysis ensemble mean.  

The initial FV3-based GFS implementation seeks to utilize existing infrastructure as much as is feasible. The FV3 

dynamic core utilizes a cubed-sphere grid, though with the addition of the NOAA Environmental Modeling System 

(NEMS) write-grid component, forecasts are also available on the Gaussian lat-lon grids that the GSI and EnKF 

infrastructure can ingest without much additional effort. This allows for the deterministic and ensemble analysis 

increments to be computed on the Gaussian grid, which are subsequently interpolated to the cubed-sphere grid 

within the model itself and added onto the native grid restart state.  

The stochastic components that are used in the GFS spectral model have been modified and adapted for use within 

the NEMS-FV3 model. For the initial implementation, stochastically perturbed boundary layer specific humidity 

(SHUM, Tompkins and Berner, 2008) and stochastically perturbed physics tendencies (SPPT, Buizza et al., 1999) 

are targeted for use. Stochastic energy backscatter (SKEBS, Shutts, 2005) is available as an option in the NEMS-

FV3 model, but is not utilized as part of this initial implementation.  

One significant decision that was made early in the development and testing phase was to increase the spatial 

resolution of the ensemble to be exactly half of the deterministic control. The prototype FV3-based GFS is 

configured to run at C768 resolution (~13 km) for the control with an 80 member ensemble cycled at C384 (~26 

km). Likewise, the analysis increment is also computed on a Gaussian grid that roughly corresponds to C384 

resolution.  

The initial FV3-based GFS implementation utilizes physics parameterizations primarily from operations, with the 

largest exception being the microphysics. The operational prognostic cloud scheme has been replaced with a single 

moment, six-class cloud microphysics scheme from GFDL (Lin et al., 1983). However, the operational GSI 

analyzes a total cloud condensate (a description of this within the context of all-sky assimilation can be found in 

Zhu et al., 2016). For this initial implementation, the cloud liquid water and cloud ice hydrometeors from the 

background are combined into a total cloud condensate in order to mimic current operations and produce a total 

cloud analysis increment. However, this increment is never passed back to the model itself, but instead serves as a 

so-called “sink variable.” In practice, the other control variables are being updated to be consistent with the total 

cloud increment through the multivariate correlations contained in the background error specification.  

Other aspects that have changed from the operational system are turning on all sky assimilation for the Advanced 

Technology Microwave Sounder (ATMS) instrument, reducing the near-surface sea temperature (NSST) 

background error correlation length scale, and the omission of tropical cyclone relocation and the full field digital 

filter. New observations include Geostationary Operational Environmental Satellite (GOES)-16 atmospheric motion 

vectors, NOAA-20 Cross-track Infrared Sounder (CrIS) and ATMS radiances, additional Infrared Atmospheric 

Sounding Interferometer (IASI) water vapor channels, Suomi National Polar-orbiting Partnership (NPP) Ozone 

Mapping Profiler Suite (OMPS) data, and select Meteosat-11 Spinning Enhanced Visible and Infrared Imager 

(SEVIRI) channels. 

mailto:daryl.kleist@noaa.gov
mailto:catherine.thomas@noaa.gov


To formally evaluate the full implementation package, 

several seasons of retrospective parallels were performed 

and a substantial amount of case studies covering a breadth 

of high impact meteorological events were examined.  

Results were predominantly positive, such as the 

significantly improved anomaly correlation scores (Figure 

1), better representation of the wind-pressure relationship in 

tropical cyclones, precipitation skill, and stratospheric 

ozone forecasts.  Development of the second FV3-based 

implementation has already begun, with a focus on 

advanced physics, raising of the model top, and increased 

vertical resolution. 
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coefficients (ACC) as a function of forecast lead time (top) 

for the operational GFS (black) and the FV3-based GFS real-

time parallel (red) with forecasts initialized at 00 UTC for 

January 27 - April 24, 2019. The bottom panel shows the 

difference between the FV3-based GFS and the operational 

GFS for the same timeframe. The error bars represent 95% 

confidence threshold as derived from a student t-test. 
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1. Introduction 

Assimilation of data on ocean vector winds 
(OVWs) from the Advanced Scatterometer 
(ASCAT) onboard the EUMETSAT Metop 
satellites contributes to the improvement of low-
level wind analysis fields in Japan Meteorological 
Agency (JMA) global and mesoscale numerical 
weather prediction (NWP) systems (Takahashi 
2010, Moriya 2016). To further improve the forecast 
skill of mesoscale NWP by assimilating higher-
resolution wind data, JMA changed the OVW 
product for mesoscale NWP analysis from ASCAT 
25-km winds to ASCAT 12.5-km coastal winds 
(Verhoef et al. 2012) on March 26 2019. This report 
outlines the impacts of the assimilation on the NWP 
system. 
 
2. Utilization of coastal OVW data 

The settings and parameters of quality control for 
coastal wind data are identical to those for 25-km 
OVWs. Spatial thinning of 0.5 degrees 
(approximately 50 km) was applied to both products, 
but a clear difference is seen in the spatial coverage 
of the OVWs used (Figure 1). As the target area of 
the JMA mesoscale NWP system includes many 
islands and coastal regions, the use of coastal wind 

data increases coverage on the sea surface around 
coastal regions. 
 
3. Verification results 

Two observing system experiments (OSEs) were 
performed over the periods from June 27 to August 
30 2016 and from December 11 2016 to January 15 
2017 to investigate the effects of ASCAT OVW data 
assimilation into the JMA mesoscale NWP system. 
One experiment (referred to here as CNTL) 
involved the use of OVWs from the ASCAT 25-km 
product, and the other (TEST) assimilated those of 
the ASCAT coastal product. CNTL had the same 
configuration as the JMA operational system, and 
TEST was identical to CNTL except for the ASCAT 
OVWs. Precipitation scores for three-hour 
cumulative precipitation forecasting against 
Radar/Raingauge-Analyzed Precipitation were 
improved in TEST. The bias score improved slightly 
for light rain, and the threat score increased. These 
improvements were confirmed by both summer and 
winter season experiments, and were remarkable for 
early forecast lead times. Typhoon position forecast 
skill was also improved, as shown in Figure 2. 
Figure 3 shows the example of Typhoon Mindulle 
in 2016. The speed of northward movement was 

Figure 1. OVWs of (a) 25-km products and (b) coastal products in 00 UTC mesoscale analysis on July 1st 2016. 
Circles and crosses represent assimilated and rejected data, respectively. Colors represent wind speed for the circles 
and reasons for rejection (as indicated in the top left of the panels) for the crosses. 

(b) Coastal products (a) 25-km products 



increased, and the predicted track was close to the 
best track from the Regional Specialized 
Meteorological Center (RSMC) Tokyo. 
 

4. Summary 
The use of ASCAT coastal wind data increased 

the spatial coverage of OVWs on the sea surface 
around coastal regions, and OSEs showed improved 
precipitation scores and typhoon track prediction. 
Based on these results, JMA began assimilation of 
ASCAT coastal products into its mesoscale NWP 
system on March 26 2019. 
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Figure 2. (a) Average typhoon track forecast errors 
for 8 typhoons in summer 2016. The red and blue 
lines represent positional errors in TEST and 
CNTL, respectively. Red dots indicate the number 
of cases included in the statistics. Forecasts were 
verified against best-track data from RSMC 
Tokyo. (b) Difference in typhoon position errors 
between TEST and CNTL. Negative values 
indicate error reductions, and error bars represent 
a 95% confidence interval. The triangles at the top 
indicate statistical significance differences, with 
green indicating significance. 

Figure 3. Track forecasts for Typhoon Mindulle at 
the initial times of (a) 12 UTC and (b) 18 UTC on 
August 21st 2016. The red and blue lines represent 
track predictions in TEST and CNTL, 
respectively, and the black lines show the best 
track from RSMC Tokyo. 

(b) 

(a) 
(b) 

(a) 
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1. ABI_G16 CSR Data
GOES-16 is the first of the GOES-R series of geostationary weather satellites. It became operational on 

December 18, 2017 – replacing GOES-13 in the GOES-East position centered on the Americas. It provides high 
temporal and spatial resolution imagery of the Earth through 16 spectral bands at visible and infrared 
wavelengths, using its Advanced Baseline Imager (ABI). The numerical weather prediction (NWP) community 
has an interest in using radiances from the water vapor infrared channels. Due to the extremely large data 
volume at its original pixel level, the Clear-Sky Radiance (CSR) product has been developed at the University of 
Wisconsin from the 2 km pixels for the infrared channels 7-16. The baseline cloud mask is used to identify clear 
and cloudy pixels in a 15x15 processing box, then the brightness temperatures (BTs) from the clear pixels are 
averaged within the processing box. Meanwhile, the percentage of clear pixels and the standard deviation of the 
BTs from the clear pixels within the processing box are reported as well. These two parameters can be very 
helpful during the thinning process. 

2. Evaluation of the CSR Data and Additional Cloud Detection
The ABI_G16 CSR data quality has been evaluated at the National Centers for Environmental 

Prediction (NCEP) through studying the statistical characteristics of the CSR data, compared with the simulated 
model equivalence (OmF) using the operational Global Forecast System (GFS) model. Results have been fed 
back to the CSR algorithm developers. Several versions of the CSR data have been tested at NCEP/EMC. The 
most important change during this CSR algorithm development is the cloud mask update from the baseline 
cloud mask to the so-called enterprise channel dependent cloud mask. A comparison of the OmF statistics from 
both the baseline and enterprise cloud mask CSRs is shown in Fig. 1 for the window channel. The OmF 
horizontal maps in Figs. 1 (a) and (b) clearly demonstrate that the enterprise CSR removes more cloudy pixels 
than does the baseline CSR. Thus, both the OmF bias and standard deviation decrease significantly as shown in 
the histogram plot of the OmF (Fig. 1c). However, since to the enterprise version of the CSR will not be 
available in real time for use anytime soon, in order to operationally assimilate the CSR data in real time we 
have to stay with the baseline CSR. Additional cloud detections need to be performed to remove cloud 
contaminated data before the assimilation is done. Data from the low peaking water vapor and surface channels 
are excluded if the clear-sky percentage is smaller than 0.98 or the BT standard deviation from the clear pixels 
within the processing box is larger than 0.5k. Second, since Channel 14 is more transparent than Channel 15 
under clear-sky conditions, opaque clouds can generate smaller BT differences between these two channels than 
the BT differences from the simulated model equivalences. Fig. 2 shows the OmF from the baseline CSR before 
and after the above-mentioned additional cloud tests are applied to the window channel. These additional tests 
remove cloud contaminated data efficiently. 

Figure 1. (a) is the BT differences between the baseline CSR data and the simulated model equivalences (OmF) for the window channel. 
(b) is the same as (a) but for the enterprise CSR data. (c) is the normalized histogram plot of the OmF from the baseline CSR in solid and 
the enterprise CSR in dashed and dotted lines. 
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3. Preliminary CSR Assimilation Experiments and Results 
The impact of the baseline CSR product has been tested in our operational GFS Data Assimilation 

System (GDAS) utilizing the GSI hybrid 4DEnVar. Two parallel experiments were conducted with the 
operational configuration at a reduced resolution of T670 for the deterministic component and at T254 
resolution for the 80 ensemble members. The experiments cover the period from September 22 through 
November 8, 2018, with the ABI_G16 CSR data being monitored in the control and actively assimilated in the 
experiment. Only the three water vapor channels (Channels 8-10) are used over both water and land. 
Observation errors assigned are 2.4, 2.2 and 2.0 kelvin, respectively. Adaptive bias correction is initiated with 
zero values. The first week of the experiment is used as the bias correction spin-up period and is excluded from 
the verification. Fig. 3 shows the normalized OmF histograms of the three water vapor channels before and after 
bias correction. It appears that Channel 9 has the largest bias, and the lowest water vapor channel, 10, has little 
bias. The large bias for Channel 9 probably results from errors in the spectral response function or from the 
process of generating the CRTM coefficients (Emily Liu, personal communication). However, all three channels 
show good Gaussian shapes in terms of OmF after the bias correction. These preliminary assimilation 
experiments show neutral impact from the ABI_G16 CSR data. In the future, the ABI_G16 CSR data will be 
tested together with the SEVIRI CSR from both MSG08 and MSG11 and the AHI CSR from Himawari to have 
a better global coverage from geostationary instruments. 

 

 
Figure 3. (a) is the normalized histogram plot of the OmF for the channel 8. The solid and dashed curves are before and after the bias 
correction. (b) and (c) are the same as (a) but for the channels 9 and 10, respectively. 
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Figure 2. (a) and (b) are the baseline 
CSR OmF for the window channel 
before and after the two cloud tests 
are applied.  
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1. Introduction 

The Japan Meteorological Agency (JMA) has assimilated radiance data from the Advanced Technology Microwave 
Sounder (ATMS) and the Cross-track Infrared Sounder (CrIS) onboard the Suomi National Polar-orbiting Partnership 
(Suomi-NPP) since 29 March 2017 in its global Numerical Weather Prediction (NWP) system. In addition to Suomi-
NPP data, JMA also began to assimilate data from the same instruments onboard the NOAA-20 successor satellite on 
5 March 2019 into the global NWP system. This report outlines the impacts of the added data on the system. 
 
2. Methodology 

The ATMS instrument is a microwave sounder with 22 channels, including temperature and humidity sounding 
channels. Quality control (QC) and error handling for the assimilation of NOAA-20/ATMS radiance data, such as 
channel selection, thinning distance, observation errors, rain/cloud detection and bias correction (static scan bias 
correction and variational bias correction) follow those implemented for Suomi-NPP/ATMS data assimilation 
(Hirahara et al. 2017). Currently, tropospheric temperature-sounding channels (6 – 9) and humidity-sounding 
channels (18 – 22) are assimilated.  

The CrIS instrument is a hyperspectral infrared sounder with a total of 2,211 channels in full spectral resolution 
(FSR) mode. QC and error handling for the assimilation of NOAA-20/CrIS radiance data also follow those for Suomi-
NPP/CrIS (Kamekawa and Kazumori 2017). Currently, 27 channels for temperature-sounding are assimilated. The 
channels are selected from the CO2 absorption band in the long-wave IR band (LWIR) included in the disseminated 
431 channel dataset. 
 
3. Impacts on the global NWP system 

Observing system experiments covering periods in each of boreal summer 2018 and winter 2019 were performed 
to evaluate the impacts of NOAA-20 instruments on the NWP system. The standard deviations of the first-guess 
departure (i.e., the difference between observed and calculated brightness temperature), which are used as an indicator 
of data quality, were similar to or smaller than those of Suomi-NPP. Against baseline experiments in which the focusing 
radiance data of both satellites were not assimilated, the impacts of Suomi-NPP and NOAA-20 on first-guess and 
forecast-field data were similar.  

A TEST assimilation experiment with the addition of NOAA-20/ATMS and CrIS data was performed. Experiments 
for individual instruments were also performed to determine their specific contributions. Figure 1 shows changes in the 
standard deviation of the first-guess departure of the AMSU-A and MHS microwave sounders normalized to those of 
the CNTL experiment (without NOAA-20). The lines show the results of assimilating NOAA-20 ATMS (red), CrIS 
(green) and both instruments (blue). The improvements observed with the temperature sounding channels (AMSU-
A/ch4-8) and humidity sounding channels (MHS) are mainly attributable to the assimilation of ATMS data, and those 
observed with the stratospheric temperature sounding channels (AMSU-A/ch9-14) are attributable to the assimilation 



of CrIS data. 
Figure 2 shows the zonal mean of the improvement rate of geopotential height forecast data resulting from the 

assimilation of NOAA-20/ATMS and CrIS data in the TEST experiment relative to the CNTL experiment. 
Improvements in geopotential height forecast data, especially for the mid-latitudes, were observed in the TEST 
experiment in the boreal summer experiment, and were also seen in the boreal winter experiment (not shown). 
 
4. Summary 

JMA began to assimilate data from the ATMS and CrIS onboard NOAA-20 into its global NWP system in addition 
to those of Suomi-NPP on 5 March 2019. NOAA-20 data quality is similar to or better than that of Suomi-NPP, and 
the additional use of NOAA-20 data improved the first-guess and forecast fields. 
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Figure 1. Normalized changes in the standard 
deviation (STDDEV) of the first-guess departure of 
microwave sounders AMSU-A and MHS resulting 
from assimilation of NOAA-20 ATMS (red), CrIS 
(green) and both (blue). Negative values indicate 
improvement, error bars represent a 95% confidence 
interval, and dots represent statistically significant 
changes. The validation period is from 1st August to 
31st October 2018 (92 days). 

 
Figure 2. Zonal mean of the relative improvement rate [%] in the TEST experiment (with NOAA-20/ATMS and CrIS) 
relative to the CNTL experiment (without NOAA-20/ATMS and CrIS) in RMS error against own analysis of each 
experiment for geopotential height forecast. Warm colors indicate forecast error reduction. The validation period is from 
1st August to 31st October 2018 (92 days). 
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1. Introduction 
The Japan Meteorological Agency (JMA) 

began to use Himawari-8 surface-sensitive band 
9 and 10 (6.9 and 7.3 m) clear-sky radiance 
(CSR) data in its mesoscale NWP system on 
March 26 2019 in addition to band 8 (6.2 m) 
CSR data (Kazumori 2018). Experiments 
indicated that this assimilation with a new 
radiative transfer (RT) calculation method for 
JMA’s global NWP system also had positive 
impacts on water vapor (WV) field first-guess 
(FG) and precipitation forecasting scores in the 
mesoscale NWP system. The results are 
reported here. 

2. Methodology 
The new RT calculation method is the same 

as that of the global NWP system (Okabe 2019). 
The land surface emissivity atlas of Wisconsin 
University (Borbas and Ruston 2010) and 
retrieved land surface temperatures from 
window channel (10.8 m; band 13) CSR 
observation data are used in the calculation.  

3. Assimilation experiment 
The control experiment performed (referred 

to here as CNTL) had the same configuration as 
the operational JMA mesoscale NWP system as 
of October 2018. The test experiment (TEST) 
was as per CNTL, but surface-sensitive CSRs 
from Himawari-8 (band 9 and 10) were 
additionally assimilated. The experiment 
periods were from June 22 to July 31 2017 
(referred to as summer) and from December 6 
2017 to January 15 2018 (referred to as winter). 

4. Impacts on the NWP system 
Figure 1 shows normalized changes in the 

standard deviation (STD) of the FG departure 
for microwave humidity sounder (MHS) and 
microwave imager data, which contain 
information on WV in the troposphere. The 
decreases indicate the improvement of fittings 
between FG and other observations. Figures 2 
(a) and (b) show the data counts of Himawari-8 
band 9 CSR used in the TEST experiment. 
Figures 2 (c) and (d) show differences in the FG 
departure STD for MHS between TEST and 

CNTL. The decreases observed (plotted in blue) 
were seen in particular over areas where counts 
of newly assimilated data were relatively large 
(as indicated by red circles). These results imply 
that assimilation of surface-sensitive CSRs 
contributes to reducing WV field errors in 
mesoscale model (MSM) FG data. 

Figure 3 shows threat scores and bias scores 
for three-hour cumulative precipitation 
forecasts. Reductions of precipitation forecasting 
underestimation in the summer experiment and 
overestimation in the winter experiment are 
observed, and slight improvements are seen in 
threat scores. 

5. Summary 
JMA began to assimilate surface-sensitive 

CSRs from Himawari-8 (bands 9 and 10) in the 
mesoscale NWP system on March 26 2019, and 
the new RT calculation method used in JMA’s 
global NWP system was applied. Positive 
impacts from these CSRs on WV field accuracy 
of the first guess in the MSM were shown in an 
assimilation experiment, which also revealed 
improved precipitation forecasting scores. 
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Figure 1. Normalized changes in the standard deviation 
(STDDEV) of first-guess departures for microwave 
sounding data for each channel number [ch] (top) and 
microwave imager data for each channel’s frequency 
[GHz] (bottom). “V” means the polarization as vertical.  
The validation periods are from June 27 to July 31 2017 
(right) and from December 11 2017 to January 15 2018 
(left). 
 

 
Figure 2. Counts of Himawari-8 band 9 CSR data used in 
the TEST experiment of the summer period (a) and the 
winter period (b), and normalized changes in the standard 
deviation of first-guess departures for MHS (channel 4) 
between the TEST and CNTL experiments for the 
summer period (c) and the winter period (d) 

 

 

 
 

Figure 3. Threat scores (a), (c) and bias scores (b), (d) for 
three-hour cumulative precipitation forecasts against 
Radar/Raingauge-Analyzed Precipitation data during the 
summer experiment period (a), (b) and the winter 
experiment period (c), (d). Green lines are for CNTL and 
red lines are for TEST. Error bars represent 95% 
confidence intervals. 
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1. Introduction 
Clear-sky radiance (CSR) data from 

geostationary satellites contain information on 
water vapor (WV) amounts in the upper 
troposphere. The usage of surface-sensitive (WV 
band; 6.9 and 7.3 m) CSR data from Himawari-
8 was previously limited over ocean areas in the 
Japan Meteorological Agency’s (JMA’s) global 
NWP system (Kazumori 2018) because accurate 
land surface temperature and emissivity 
information is required for assimilation. Against 
this background, JMA developed a new 
methodology for radiative transfer (RT) 
calculation using retrieved land surface 
temperature data. Assimilation experiments 
performed with this methodology indicated that 
surface-sensitive CSRs from Himawari-8 and 
Meteosat Second Generation (MSG) data for 
areas over land had positive impacts on WV field 
accuracy in first-guess (FG) and forecasting 
scores from JMA’s global spectral model (GSM). 
The results of these experiments are reported 
here.  

2. Methodology 
To improve RT calculation accuracy, JMA 

now uses the atlas of Wisconsin University 
(Borbas and Ruston 2010) for land surface 
emissivity data rather than a constant value 
(0.90) and land surface temperatures from 
Himawari-8’s band-13 window channel (10.8 

m) CSRs rather than FG surface temperature 
data from the GSM. These CSR observation data 
and FG atmospheric profiles are leveraged in RT 
calculation to determine land surface 
temperatures, which are in turn used in RT 
calculation to derive FG brightness 
temperatures for WV-band CSRs. Quality 
control (QC) is modified to rejected CSR data for 
altitudes exceeding 4,000 m in GSM topography, 
thereby eliminating the use of CSR data over the 
Tibet Plateau, where extremes of geographical 
relief cause gaps between actual altitudes and 
those used in the GSM. These gaps affect the 
accuracy of RT calculation, and CSR data for 
areas over high mountains contain less WV 
information than those for areas over low plains 

and oceans, since there is less WV at such high 
altitudes. The time interval for assimilation of 
Meteosat and GOES CSR data was also changed 
from two hours to an hour in addition to the 
adoption of Himawari-8 CSR data usage. 

3. Assimilation experiment 
The control experiment (referred to here as 

CNTL) had the same configuration as the 
operational JMA global NWP system as of June 
2018. Surface-sensitive CSRs from Himawari-8 
and MSGs were assimilated, and QC for CSR 
data at high altitudes and the periodicity change 
were added to the test experiment (referred to as 
TEST). The experiments covered periods of 
around four months from June 10 to October 11 
2017 and from November 10 2017 to March 11 
2018. 

4.  Impacts on the NWP system 
Figure 1 shows normalized changes in the 

standard deviation (STD) of FG departure for 
microwave humidity sounder (MHS) data and 
radiosonde observation data on relative 
humidity. The reduced values indicate an 
improvement in correspondence between FG 
and other observations. Figure 2 shows 
differences in the FG departure’s STD for MHS 
data between TEST and CNTL. Decreases 
(plotted in blue) in STD were observed over land 
areas (e.g., Australia and Africa). As these 
observations contain information on WV in the 
troposphere, the results suggest a positive 
impact from surface-sensitive CSR assimilation 
over land on WV field accuracy for FGs in the 
troposphere. Forecasting scores in the short 
range were improved in the fields of humidity, 
temperature and wind speed (Figures 3 and 4). 
The altitude of forecasting improvement was 
that in which correspondence between FG and 
radiosonde observations was enhanced, as 
shown in Figure 1. 

5. Summary 
JMA began assimilating surface-sensitive 

CSR data from Himawari-8 for areas over land 
and MSG data for areas over land and oceans on 
October 18 2018. A new RT calculation method 



 

 

involving the use of data from the Wisconsin 
University land surface emissivity atlas and 
land surface temperatures retrieved from 
window-channel CSR observation data was 
developed for assimilation of surface-sensitive 
CSRs. At the same time, the quality control was 
modified to remove CSR data from high-altitude 
areas. The time interval for the assimilation of 
Meteosat and GOES CSRs was changed from 
two hours to an hour, and positive impacts from 
surface-sensitive CSR assimilation on the WV 
field of the FG were found. Improved short-
range forecast scores were also observed for 
specific humidity, temperature, wind speed and 
geopotential height fields in the assimilation 
experiment. 
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Figure 1. Normalized changes in the standard deviation 
(STDDEV) of first-guess departures for microwave sounding 
data for each channel number [ch] (top) and radiosonde 
observation data for relative humidity for each pressure height 
(bottom). The validation periods are from June 21 to October 
11 2017 (right) and from November 21 2017 to March 11 2018 
(left). 

 
 

 
Figure 2. Normalized changes in the standard deviation 
of first-guess departures for MHS (channel 4). The 
validation period is from June 21 to October 11 2017. 

 

 
Figure 3. Relative improvement of root mean square error 

of 24-hour forecasts for (a) specific humidity, (b) temperature, 
(c) wind speed and (d) height. Forecasts of only 12 UTC initials 
were counted, and ECMWF analysis was used in validation. 
The validation period is from July 1 to September 30 2017. 

 

 
Figure 4. As per Fig. 3, but with a validation period from 
December 1 2017 to February 28 2018. 
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1. Introduction 

Ballish and Kumar (2008) reported that aircraft 
temperature data exhibit various biases depending 
on aircraft type, and exhibit statistically higher 
values than similar data from radiosonde 
observation. 

Against this background, correction for aircraft 
temperature bias was introduced to the JMA global 
data assimilation system (GA) in November 2009 
(Sako 2010) and to the mesoscale data assimilation 
system (MA) in March 2019. 
 
2. Bias correction methodology 

Estimated temperature biases in the GA system 
are applied to bias correction for aircraft 
temperature in the MA system. The bias estimation 
method for the GA system is based on monthly 
statistics of first-guess (FG) departures for 
individual aircraft tail numbers and flight levels 
over the previous month (Sako 2010). 
 
3. Impacts of bias correction 

Observing system experiments on the mesoscale 
NWP system were performed over a month in 
summer 2018. Figure 1 compares the resulting FG 
departure fits to aircraft temperature data 
between the two experiments without and with 
bias correction (noBC and BC, respectively). It can 
be seen that aircraft temperature bias correction 
significantly reduces biases and standard 
deviations of FG departure. Figure 2 shows FG 
departure fits to radiosonde temperature data. It 
can be inferred that the use of bias-corrected 
aircraft temperature data leads to bias reduction in 
radiosonde temperature data from over 300 hPa 
and standard deviations in many layers, which 
improves the FG against radiosonde temperature 
data. In the area of forecast improvement, Figure 3 
shows verification of mean errors and root mean 
square errors against radiosonde temperature data 
in 12-hour forecasting during the experiment 
period. A positive impact is generally seen above 
300 hPa, with reduced positive temperature bias 
and root mean square errors. 

 
4. Summary 

Aircraft temperature bias correction is generally 
required in data assimilation systems to reduce 
positive biases and root mean square errors above 
300 hPa. Based on the related impacts, such 
correction was introduced to JMA’s operational 
mesoscale data assimilation system in March 2019. 
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Figure 1.  Biases (right), standard deviations 
(center) and sample numbers (left) of fits of the 
first-guess departure to aircraft temperature data 
in the experiment. Blue: noBC; red: BC. 

Figure 2. As per Fig. 1, but for radiosonde 
temperature data. 
 
 

Figure 3. Fits to radiosonde data for 12-hour forecasting of temperature in the experiments. (a) Vertical profile 
of mean error (ME), (b) BC-noBC of ME, (c) vertical profile of root mean square error (RMSE), (d) ratio of RMSE 
change ((BC-noBC)/|noBC|). The red and blue lines represent BC and noBC, respectively, and error bars 
represent 95% confidence intervals.
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The Real Time Mesoscale Analysis (RTMA) and UnRestricted Mesoscale Analysis (URMA) 
projects provide hourly and sub-hourly analyses of surface variables, cloud cover and 
precipitation on the National Weather Service’s National Digital Forecast Database grid.  They 
are used for situational awareness, current conditions for transportation customers, verification 
of forecasts and as the reference for the bias correction in the National Blend of Models. 

One major development underway is a fully three-dimensional “3D RTMA” system, which 
should replace the current two-dimensional (2D) system within the next year or two.  It will 
provide 3D analyses at very high horizontal resolutions (~1.25 km) issued at very frequent time 
intervals (~15 min).  One key prerequisite for the success of such an enterprise is a vastly 
improved efficiency in producing those analyses. The new approach to modeling of background 
error covariances, which will be discussed here, is one of the key components for the success of 
that effort.   

Recursive filters (Purser et al. 2003a, b) represent efficient and very good approximations to the 
Gaussian components of which each univariate covariance operator is composed, and they 
accommodate spatial inhomogeneity and local anisotropy of analyzed field increments.  On the 
down side, a recursive filter, being inherently sequential and with infinite support, is very 
difficult to successfully parallelize.  Also, it is not easily able to describe covariances across 
various scales, or to take into account cross-correlations between different variables, or to 
provide the negative side-lobes which realistic covariance often possess. 

Our alternative to recursive filters is based on the Beta distribution filters.  The “radial” version 
of the Beta filter is defined, in any number of dimensions, as having the smoothing kernel: 

𝛽𝛽(𝒓𝒓) = �
(1 − 𝜌𝜌)𝑝𝑝, 𝜌𝜌 ≤  1 
        0      , 𝜌𝜌 >  1 

   , 

where 𝑝𝑝 is a small positive integer exponent and, in the isotropic case, 

𝜌𝜌 = 1
𝑠𝑠2
𝒓𝒓 ∙ 𝒓𝒓𝑇𝑇            . 

Here, 𝑠𝑠 is a radial scale and 𝒓𝒓 the displacement vector, e.g., in 2D, 𝒓𝒓 = (𝑥𝑥,𝑦𝑦).  Such a 𝛽𝛽 function 
also has a quasi-Gaussian shape, but with a finite support.  In an anisotropic generalization 
𝑠𝑠2 is replaced by a symmetric, positive-definite “aspect tensor”, used as its matrix inverse 
A−1,  so that:  

 𝜌𝜌 = 𝒓𝒓A−1𝒓𝒓𝑇𝑇                        . 
A larger exponent 𝑝𝑝 implies a more Gaussian shape, but also a narrower one.  The Beta filter is 
further used at a hierarchy of different scales, suitably weighted and combined in a multigrid 



scheme, in order to achieve a larger coverage and potentially a more versatile synthesis of 
anisotropic covariances, and allowing a greater control over the shape.  Each successive 
“generation” of the multi-grid hierarchy, is characterised by successive factors of two in grid 
spacing and scale going from fine to coarse.  Each generation is given separate weights, which 
signify the effect of these scales in the final solution. 
 

     
      Fig. 1.    Appearance of delta function impulse after application of the multigrid Beta filter. 
 
 

A very efficient, “line” version of the filter is also being developed which, in small numbers of 
sequential combinations, can fill out the higher dimensions of a covariance operator (up to four 
dimensions), to eventually supersede the less efficient radial versions of the corresponding filter 
in final applications.  Among other novelties, we are planning to introduce a new efficient 
method for normalization of covariances and a neural network approach for determining scale 
weights.  The versatility of the approach will also allow as to introduce and experiment with the 
cross-covarianes in the definition of the background error covariance by replacing scalar 
weights acting on variables separately, by self-adjoint differential operators acting on several 
variables together.  Other plans include application of this technique on the cubed-sphere, 
which will enable running data assimilation directly on that geometry, and an application 
within the new Joint Effort for Data assimilation Integration (JEDI) based on object-oriented 
principles. 
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1. Introduction 

Recently, heavy rainfalls occur almost every year in Japan. To reduce the damage caused by 
heavy rainfall, the accuracy of rainfall forecasts should be improved. Japan is surrounded by the 
sea and the most of low-level inflows that supply water vapor to heavy rainfalls originate from 
over the sea. Because water vapor supplied from low-level inflows affects greatly the rainfall 
amount, accurate water vapor data over the sea is needed to improve the heavy rainfall forecasts. 
The satellites provide water vapor distributions over the sea. However, the observation frequency 
is only a few times a day. To overcome this point, we used the GNSS data observed on the vessel 
(Shipborne GNSS). In this study the impact of GNSS PWV obtained by the JMA’s vessel (Ryofu-
maru) was investigated by using Meso-NAPEX. 

 
2. Data assimilation method 

The Meso-NAPEX (Numerical Analysis and Prediction EXperiment system) is a quasi-
operational Data Assimilation system which enables us to make data assimilation cycle 
experiments(http://jksv-pj.npd.naps.kishou.go.jp/redmine/base/projects/napex-model/wiki/  
NAPEX%E3%81%A8%E3%81%AF). The grid interval of the Meso-NAPEX is 5 km. The data 
assimilation window is 6 hours and the observation data are assimilated every hour. As the target 
event for the data assimilation experiment, the precipitation system associated with the low-
pressure system, which passed over Kyushu on 5th June 2017, was adopted. On June 5th, the 
Ryofu-maru stayed south of Kyushu, on the immediately southern side of precipitation system 
(windward side of low-level inflow). 

We performed two experiments, in which the convectional data of JMA including the satellite 
was assimilated by using the Meso-NAPEX (CNTL) and the PWV data of shipborne GNSS was 
added to the conventional data (S-GNSS). The accuracy of shipborne GNSS PWV is 3.4−5.4 mm 
root mean square differences against radiosonde (Shoji et al 2016). Firstly, the data assimilation 
period which is needed to improve the rainfall distribution was investigated by changing the start 
time of data assimilation. After checking the data assimilation period, the differences of water 
vapor during the assimilation period and the rainfall distributions of extended forecasts are 
investigated.  
 
3. Impact of Shipborne GNSS data 

The start time of data assimilation was changed from 00UTC 4th June to 00UTC 7th June with 
the increment of 12 hours. The rainfall distribution of the extended forecast, of which the initial  
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Fig. 1: The rainfall distributions of extended forecasts, of which the start time of data assimilation 
was changed from 00UTC 4th to 00UTC 7th June 2017. FT stands for the forecast time. 



condition was produced from the analysis of 00UTC 7th, was similar to that of CNTL (Fig. 1). When 
the start time of data assimilation was 00UTC 6th, rainfall distribution became most similar to 
the observed ones. These results indicate that the impact of one GNSS data is very weak and that 
one day for the data assimilation was needed to increase the rainfall accuracy in this case. The 
start time of 00UTC 6th is adopted in the following comparisons.  

The difference of T-Td at the height of 850 hPa (S-GNSS - CNTL) during the assimilation period 
of 00UTC 6th to 00UTC 7th is shown in Fig. 2. The T-Td around the Ryofu-maru was modified and 
the modified regions expanded south-southeastward with time. The region where water vapor is 
increased appeared at the southern side of Kyushu at 00UTC 7th (as indicated by the arrow). The 
comparisons of the rainfall distributions between Observation, CNTL and S-GNSS indicate that 
the intense rainfall regions south of Kyushu became similar to the observed ones by the 
assimilation of Shipborne GNSS data (indicated by arrows in Fig. 3). This assimilation result 
shows that Shipborne GNSS has the potential to improve rainfall forecasts through the data 
assimilation, even if the number of observations is small. 
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1. Introduction 

Based on atmospheric delays in GNSS (Global 
Navigation Satellite System) signals, it is possible to 
determine the absolute water vapor content of the 
atmosphere. Against this background, the Japan 
Meteorological Agency (JMA) uses precipitable 
water vapor (PWV) data from the Geospatial 
Information Authority of Japan’s nationwide 
ground-based GEONET (the GNSS Earth 
Observation NETwork system, which has 
approximately 1,300 receivers located throughout 
Japan; Figure 1) for its mesoscale data assimilation 
system (see Ishikawa (2010) for details, including 
JMA’s usage of ground-based GNSS data). Quality 
control for PWV data derived from ground-based 
GNSS data has been improved. 
 
2. Availability of GNSS PWV data 

JMA previously reported that PWV data derived 
from ground-based GNSS data in rainy conditions 
(referred to as rain data) had a negative bias against 
the first guess in mesoscale analysis. As a result, 
data from areas with approximately ≥ 1.5 mm/hour 
of rainfall were rejected in quality control and not 
used in mesoscale analysis. However, a review 
based on PWV data collected since 2015 indicated 
that rain data exhibit no bias in any season (Figure 
2). As the mesoscale model has been improved, 
negative biases were reduced and rain data are 
now considered appropriate for use with the 
current mesoscale data assimilation system. 
 
3. Impacts of rain data  

Observation system experiments for data 
assimilation and forecast system usage with the 
addition of rain data (referred to here as TEST) were 
performed over the period from 18 June to 23 July 
2018. Figure 3 shows the resulting lower dry bias 
and root mean square errors for forecasting of 
surface specific humidity. Figure 4 shows the 
equitable threat score (ETS) for three-hour 
cumulative precipitation forecasts, and indicates 

that rain data have a positive impact on high-
intensity precipitation data within a six-hour 
forecasting range. 
 
4. Summary 

JMA’s mesoscale data assimilation system 
previously rejected PWV data derived from ground-
based GNSS data in rainy conditions due to 
negative biases against the first guess. However, 
such data are now considered appropriate based 
on a review using the latest mesoscale assimilation 
system. The data have positive impacts on 
forecasting of surface specific humidity and 
precipitation. Based on these impacts, PWV data in 
rainy conditions has been used in JMA’s 
operational mesoscale data assimilation system 
since 26 March 2019. 
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Figure 1. GEONET stations (red points) 
  



Figure 2. First-guess departures of ground-based GNSS precipitable water vapor for August (left) and December 
2018 (right). Areas with ≥ 1.5 mm/hour of rainfall are shown in red, and those with < 1.5 mm/hour are shown 
in white. 

Figure 3. Mean errors (ME; left) and root mean square errors (RMSE; right) of surface specific humidity (unit: 
kg/kg) forecasts against observations in Japan as a function of forecast range (unit: hours) during the period 
from 18 June to 23 July 2018 for forecast experiments (blue lines: CNTL without rain data; red lines: TEST with 
rain data) 

Figure 4. Equitable threat scores (ETS; left) for three-hour cumulative precipitation forecasts against 
Radar/Raingauge-Analyzed Precipitation during the period from 18 June 2018 to 23 July 2018 for forecast 
experiments (blue lines: CNTL without rain data; red lines: TEST with rain data). The figure on the right shows 
TEST - CNTL. Error bars represent 95% confidence intervals. 
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Real-Time and Unrestricted Mesoscale Analysis Systems 
The Real Time Mesoscale Analysis (RTMA) and the UnRestricted Mesoscale Analysis (URMA) are 2D 
variational analysis systems that first went into operations at NOAA in 2006 and 2013, respectively. The systems 
provide gridded analyses of surface pressure, temperature and moisture at 2 meters above ground level, wind 
speed/direction and wind gust at 10 meters, significant wave height, ceiling height and visibility, and cloud cover 
for the contiguous United States (CONUS), Alaska, Hawaii, Puerto Rico, and Guam (Pondeca et al. 2011). In 
December of 2017, the rapid-update RTMA (RTMA-RU) system was added to the RTMA operational suite, 
refining the hourly-updated analysis to 15-minute-updated analysis for CONUS. 

The three components of RTMA are a downscaling and first guess process leveraging short-term forecasts from 
the best-available convection-allowing model output (e.g., the High Resolution Rapid Refresh); an analysis 
process using the NOAA Grid-point Statistical Interpolation (GSI) system; and a post processing step to convert 
the guess and analysis into GRIB2 format, as well as estimate the analysis error using a Lanczos-based method 
(Pondeca et al. 2011). The system assimilates observations from a variety of platforms including surface 
observing systems, mesonets, buoys, geostationary satellite cloud products, scatterometer winds, and altimeter-
derived significant wave heights. This paper focuses on efforts toward improving the ceiling and visibility 
analysis through a nonlinear transformation of the variables. 

Objective 
The objective is to improve ceiling and visibility analysis by employing a nonlinear transformation technique into 
RTMA. Analyzing ceiling and visibility is very challenging, mainly because the fields are highly discontinuous in 
space and time. While poor visibility and low cloud ceiling are typically rare events, they are critically important 
to general aviation, commercial transportation, and helicopter emergency rescue services.  

There are two advantages from this new algorithm: 1) the transformed variables better adhere to a Gaussian 
distribution, therefore leading to a better analysis; 2) the errors associated with the linear approximation are 
eliminated. In the previous algorithm, a linear approximation was required to combine the penalties calculated in 
logarithmic space with those calculated in the state space. The new algorithm eliminates this step because all 
computations in the analysis process are computed with the transformed ceiling and visibility (Yang et al. 2018). 

Nonlinear Transformation and parameter estimation  
The general nonlinear transformation formula (Purser, 
personal communication) takes the following form: 
𝐺𝐺(𝑝𝑝;𝑥𝑥) = [𝑥𝑥𝑝𝑝 -1]/𝑝𝑝 

Here, 𝑥𝑥 is the variable to be transformed and 𝑝𝑝 is a real 
constant. The transformation converts 𝑥𝑥, which is not a 
Gaussian variable, into the space of  𝐺𝐺(𝑝𝑝;). The 
transformed variable possesses a Gaussian distribution. 
Figure 1 shows the function family with several 𝑝𝑝 
values: when 𝑝𝑝→0,  𝐺𝐺(𝑝𝑝; 𝑥𝑥) is the natural logarithm 
function, whereas when 𝑝𝑝=1, it is a linear function. 

The procedure to determine 𝑝𝑝 was done empirically in 
the following way:  given a value, 𝑝𝑝 confined to a range 
[0-1], we apply 𝐺𝐺(𝑝𝑝; 𝑥𝑥) to both observations and the 
first guess, and compute the innovation. The median of 
the innovations is then used to divide the data into two groups, one with values less than the median (denoted as 
R1), the other with values equal to or larger than the median (denoted as R2). A histogram is computed for each 

Figure 1 General nonlinear transformation function 
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group.  The same computation is then repeated using the data set generated by 𝐺𝐺(𝑝𝑝; 𝑥𝑥) with a different 𝑝𝑝 value. 
Here we defined the so-called optimal 𝑝𝑝 when the following criterion was satisfied: if the histogram shapes of R1 
and R2 change significantly with different 𝑝𝑝 values, an optimal 𝑝𝑝 exists between these two adjacent values. In 
practice, the resulting histogram of R1 is the one closest to Gaussian distribution among all other histograms (e.g., 
Fig. 4 of Yang et al. 2018).  In this application, 𝑝𝑝 = 0.2 for visibility and 𝑝𝑝 = 0.1 for cloud ceiling. 

We analyzed data sets of the innovations from multiple RTMA analyses to obtain a range of approximate error 
statistics. Single observation tests were also used to check and adjust these statistics. A real-time test run spanning 
several months was also leveraged to adjust the statistics based on the overall analysis fits to the observations. 

Assessment and Examination of Results 
The experiment run started March 2018 and continued for several months. The corresponding control run for the 
comparison was performed with the previous ceiling and visibility analysis algorithm used in the operations. The 
metrics for assessment focused on comparisons between the control and the experiment throughout examination 
of the overall analysis fits to observations, visual inspection of the 2D-fields, and multi-level contingency tables 
based on flight category definitions. A preliminary assessment shows the experimental runs produce a consistent 
reduction in RMSE but yield a slightly larger bias for visibility. The comparisons of 2D fields revealed that the 
experimental run represents the fine-scale structures of the ceiling and visibility field, particularly in areas with 
significant weather systems. The details are described in Carley et al. (2018). Table 1 lists the Hit Rate and False 
Alarm Rate computed from the observed and analyzed visibility, generated by the control and the experiment with 
RTMA-RU, over the CONUS for the period of 03/31 – 04/03, 2018.  The Hit Rate indicates a system’s ability to 
detect an event of interest, while False Alarm Rate describes the fraction of events that were forecast but did not 
occur. The table clearly demonstrates that the experiment improves the Hit Rate and reduces the False Alarm Rate 
in all four flight categories for visibility. Similar improvements are found for ceiling (not shown). 
 
Table 1.  Hit Rate and False Alarm Rate (x 100) computed from observed and analyzed visibility generated by the control and the 
experiment.  False Alarm rate is annotated in brackets. 
 LIFR 

Low Instrument Flight 
Rules 

Visibility < 1 mi. 

IFR 
Instrument Flight Rules 
1 mi <= Visibility < 3 

MVFR 
Marginal Visual Flight 

Rules 
3 mi <= Visibility <= 5 

VFR 
Marginal Visual Flight 

Rules 
Visibility > 5 

Control 48.84 [1.34] 50.28 [1.77] 49.96 [2.32] 98.39 [10.63] 
Experiment 71.99 [0.48] 70.04 [1.44] 62.10 [2.00]            98.61 [5.55] 
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Objective and background 

Over the CONUS, the 2DVar Real-Time Mesoscale Analysis (RTMA) and Unrestricted Mesoscale 

Analysis (URMA) system have access to a fairly dense network of conventional surface observations, 

especially in non-mountainous regions. However, outside of the CONUS domain, especially over Alaska 

(AK), the coverage of in-situ observations is relatively sparse. This complicates the creation of a high 

quality analysis. The assimilation of satellite observations is therefore an area that can be explored to 

improve the RTMA/URMA surface temperature analyses in regions of limited in-situ observations. This 

project is focused on the AK RTMA/URMA domain and explores the assimilation of Visible Infrared 

Imaging Radiometer Suite (VIIRS) satellite retrieved Land Surface Temperatures (LST) to improve the 

AK RTMA/URMA surface 2-meter temperature analysis (T2M). This 3-km resolution surface analysis is 

expected to contribute to improving forecasters’ analysis of AK weather. Previously, Bosilovich et al. 

(2007) showed that LST assimilation improves estimates of 2-meter air temperature, both in the mean and 

variability. But their study was made with a coupled land surface model. 

Methods 

Previous investigations (Bosilovich et al. 2007; Reiche et al. 2010) on the assimilation of satellite 

retrieved LST have been mostly carried out within a pure soil model or within a coupled land surface 

model. Relationships between the LSTs and surface energy cycle are derived from these models. 

However, the RTMA/URMA is a 2DVar system; there is no coupled land surface model, or 3-D 

atmospheric profiles available in the analysis algorithm. It is therefore difficult to assimilate LST directly 

through the surface energy cycle. An alternative approach in assimilating LSTs into the RTMA/URMA 

system is to convert LST to T2M (also known as pseudo T2M), which can then be assimilated in the same 

manner as other conventional T2M observations, such as those observed from METARs. The Monin-

Obukhov similarity theory, which is based on the Dyer and Hicks (1970) formula, is adopted to convert 

the LST to pseudo T2M in this work. The similarity theory and conversion from LST to T2M are 

described below in detail.  

Temperature at the 2-meter height can be obtained using the similarity theory as follows: 
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�� is potential temperature at the model lowest sigma level and �� is potential temperature on the ground,

which is converted from LST. ���� is surface pressure.  The stability functions are given by:

��=log �#�
�$

� − �#;  ���=log� �
�$

� − �#�
where ℎ� is the height of at the lowest model level, and z=2m is the height at which the temperature will

be computed. &� is the roughness length prescribed in the model. The ideal gas constant (R) is 287.04 JK
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, and the specific heat at constant pressure (Cp) is 1004.0 JK
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. ψh and ψhz are the stability

function for heat but are calculated at the lowest model level and at the 2-m height above the ground, 

respectively. This stability function is determined according to atmospheric stability based on the Bulk 

Richardson number (Lee et al. 2005). 

Preliminary Results 

Two single analysis experiments were performed. The control run (CTRL) only assimilates conventional 



observations, as in the operational RTMA. The experiment assimilates VIIRS LST and conventional 

observations (EXPLST). Both experiments use the same downscaled 13-km Rapid Refresh model 1-hour 

forecast as the first guess. Due to its high resolution (750m), VIIRS LST was thinned to a 20-km mesh 

using the existing thinning scheme in GSI. All other conventional observations are kept at their original 

resolution. The observation error of LST is set to 1.2 Kelvin. The VIIRS LST high quality flagged pixels 

are used as the quality control. A gross error/outlier check is also employed in the 2DVar algorithm. 

The departures of observations (pseudo T2M) from the background (OMB) and from the analysis (OMA) 

are shown in Fig. 1. For the cases examined here all histograms of OMA are more Gaussian than OMB. 

This indicates that the analysis algorithm is functioning as expected by fitting VIIRS pseudo T2M. The 

T2M analysis differences between EXPLST and CTRL (Fig. 2a) show mostly negative values, indicating 

that assimilating LST made the T2M colder than only assimilating the conventionally available in-situ 

observations. Consistent with the colder T2M, the 2-m dew-point temperature is also lower (Fig. 2b). 

Case studies beyond those described in this report have been carried out. It is confirmed that the analysis 

algorithm developed for the assimilation of VIIRS LST is able to fit the observations reasonably well. 

The standard deviation of analysis departures are reduced as expected. 
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In the past decade, with the advances of forecast models and the improvement of radiative transfer models, 
Numerical Weather Prediction centers have made steady progress towards utilizing cloudy radiances in addition 
to clear sky radiance observations (Geer et al. 2018). In the Gridpoint Statistical Interpolation (GSI) analysis 
system at the National Centers for Environmental Prediction (NCEP), the assimilation of cloudy radiances from 
the Advanced Microwave Sounding Unit-A (AMSU-A) microwave radiometer for ocean fields of view (FOV) 
became operational in the 4D hybrid Ensemble-Variational (EnVar) Global Forecast System (GFS) in 2016 
(Zhu et al. 2016). Since then, an effort has been made in the expansion of the all-sky approach to use radiances 
from the Advanced Technology Microwave Sounder (ATMS). This work is currently being included in a real-
time parallel for an upcoming operational implementation in 2019, and more detailed information can be found 
in Zhu et al. 2019. 

ATMS has 22 channels and combines most of the channels from AMSU-A and the Microwave Humidity 
Sounder (MHS). With the MHS-like channels, this work also introduces water vapor channels into the all-sky 
approach. Normalized cloud water is used as the cloud control variable. Total cloud water is decomposed into 
liquid and ice cloud state variables based on a temperature-dependent empirical function. Only the radiances 
affected by non-precipitating clouds and clear-sky radiances are used, due to the lack of a snow and precipitation 
first guess from the original operational forecast model. The background error covariance is composed of the 
static term and another part generated from the ensemble forecasts, with 87.5% weight given to the ensemble 
part.  

Since ATMS has varied beam widths, the ATOVS and AVHRR Pre-processing Package (AAPP, NWP 
SAF/EUMETSAT) with remapping and spatial averaging is applied to all 22 channels, instead of just channels 
1–16 in the operational GFS system, to convert the beam widths to 3.3o in the all-sky approach. It has also been 
noticed in this study that ATMS radiances have large departures from the first guess (OmF) around coastlines 
and cryosphere boundaries. The capability of modeling surface properties (including land/sea fraction) based on 
the FOV size and shape is exercised for the all-sky ATMS radiances, and the ATMS radiances over mixed 
surface type locations are excluded.  

With the introduction of MHS-like channels into the all-sky framework, the scattering effect increases due to the 
higher frequencies. In the CRTM, however, non-precipitating clouds (cloud liquid water and cloud ice) are 
assumed to be small particles in comparison to microwave wavelengths; thus the scattering is not considered by 
design when there is no information about snow, graupel and precipitation. Considering the consistency between 
the observations and simulated radiances from the CRTM, a new observation scattering index (SI) is constructed 
to exclude those radiances that are affected by strong scattering. SI is defined as the difference in cloud effects 
between channels 16 and 17, where the cloud effect is calculated as the difference between the observed 
brightness temperature and the brightness temperature without hydrometeor information being considered. 
Observations from channels 1–7 and 16–22 with |SI| > 10.0K are excluded in this study. In the final gross error 
check, bias-corrected ATMS radiances with OmF magnitude larger than 10.0K or three times the observation 
error, whichever is smaller, are excluded from the data assimilation system. 

The ATMS radiances that pass the quality control procedures are bias corrected in the GSI's variational bias 
correction framework (Derber and Wu 1998; Zhu et al. 2014), but by using a selected data sample in the bias 
coefficient derivation to avoid the impact of large model errors. The observation error of the ATMS radiance is 
assigned as a function of the symmetric cloud amount (Geer and Bauer 2011) followed by the situation-
dependent observation error inflation procedure (Zhu et al. 2016), where the two most important physically-



Figure 1 One-month averaged OmF over water of June 2015: before (left column) 
and after (right column) bias correction for MHS channel 1 (row 1) and ATMS 
channel 16 (row 2) in the clear-sky approach, and ATMS channel 16 (row 3) and 
AMSU-A channel 15 (row 4) in the all-sky approach. The unit is K. 

based factors are cloud placement difference and cloud liquid water difference between the first guess and 
observation. 

Overall, the assimilation of ATMS radiances in the all-sky approach improves the consistency of microwave 
radiance OmFs among different sensors. An example is 
given in Fig. 1 with ATMS channel 16 and its closest 
matches: MHS channel 1 and AMSU-A channel 15. The 
bias correction is seen to have a big impact on the OmF 
patterns. After bias correction, while the OmF patterns 
for ATMS channel 16 and MHS channel 1 are similar in 
the clear-sky approach, they are significantly different in 
several regions from the OmF patterns of ATMS channel 
16 and AMSU-A channel 15 in the all-sky approach. One 
such region is to the west of the South American 
continent. Issues are identified in the clear-sky approach 
of operational MHS and ATMS radiance assimilation, 
with the possible leaking of radiances affected by clouds 
into the GSI or an incomplete removal of cloud effects. 
As a small improvement in the fits to rawinsonde 
specific humidity data is observed to persist in the 48h 
forecast, the assimilation of all-sky ATMS radiances is 
found to have an overall neutral impact on the model 
forecast skill, with a small improvement in the Southern 
Hemisphere mainly at day 3. The all-sky ATMS radiance 
assimilation will become operational in the upcoming 
GFS implementation in 2019.  

Although initial efforts made to account for the non-Gaussian distribution of innovations using an adaptation of 
variational quality control based on a super-logistic distribution (Purser 2018) have not so far been successful, 
future work will continue on this topic. Since the all-sky AMSU-A and ATMS radiance assimilation are 
currently implemented only over ocean FOVs, a research study on the all-sky radiance assimilation over land is 
also underway. As the forecast models are transitioning to the Finite-Volume Cubed-Sphere Dynamical Core 
(FV3) model with more advanced physics at NCEP, the choice of cloud control variables will be examined. 
Meanwhile, the tests on the inclusion of subgrid-scale clouds and precipitation in the all-sky radiance 
assimilation are ongoing.  
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