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1 Neural Network Emulations of Model Physics

One of the main difficulties in developing and implementing high-resolution environmental models is the complexity of the physical
processes involved. For example, the calculation of radiative transfer in a GCM often takes a significant part of the total model
computation and is necessarily a trade-off between accuracy and computational efficiency. Very accurate methods exist, such as
line-by-line procedures, that are, however, too computationally prohibitive to be used in GCMs, and, therefore, radiative transfer is
parameterized, for example, by the correlated-k method. Nevertheless, even further computational cost reductions are needed and
thus radiation calculations are usually made at lower temporal and/or spatial resolutions than the rest of the model followed by an
interpolation of the results to an original finer grid. Such approaches reduce the horizontal, or vertical, or temporal variability of
radiation fields and their consistency with other parts of model physics and with dynamics, which may, in turn, negatively affect the
accuracy of climate simulations and weather prediction. For example, in the pre-operational version of NCEP FV3 GFS radiative
transfer calculations are performed once per model hour and are interpolated on the much finer physical time step of 225 s when
the rest of model’s physical parameterizations are called. One approach addressing these issues is based on using neural networks to
”emulate” existing physical parameterizations.

Any parameterization of model physics is a mapping (continuous or almost continuous) between two vectors: a vector of the
input variables of parameterization and a vector of its output variables. A neural network (NN) is a generic approximation for any
continuous or almost continuous mapping given by a set of its input and output records. Existence of the approximation is guaranteed,
and its error bound is independent of the dimensionality of the mapping (e.g., Krasnopolsky (2013)). NNs are very accurate, fast, and
convenient statistical models able to approximate numerical model components, which in essence are complex nonlinear input/output
relationships. Finding the analytical expression for the approximation (or ”training” the NN) is a complicated and time consuming
nonlinear optimization procedure; however, training should be done only once for a particular application.

An NN emulation of a model physics parameterization is a functional imitation of this parameterization in the sense that the results
of model calculations with the original parameterization and with its NN emulation are physically identical. It is accomplished by
using the data for NN training simulated by running the original model with the original parameterization, which allows to achieve a
very high accuracy of approximation because simulated data are free of the problems typical of empirical data.

Previous work has demonstrated the practical possibility of using highly efficient NN emulations for the full (long- and short-wave)
model radiation for decadal climate simulations in a coupled climate model with prescribed time dependent CO2 and aerosols (NCEP
CFS T126L64) by Krasnopolsky et al. (2010), and a high resolution short- to medium- range weather forecasting model (NCEP GFS
T574L64) by Krasnopolsky et al. (2012). A very high accuracy and up to two orders of magnitude increase in speed as compared to
the original parameterization for both NCEP CFS and GFS full radiation has been achieved. The systematic errors introduced by NN
emulations of full model radiation are negligible and do not accumulate during the decadal model simulation. The random errors of
NN emulations are also small. Almost identical results have been obtained for the parallel multi-decadal climate runs of the models
using the NN and the original parameterization, and in limited testing in the medium-range forecasting mode.

The mapping approximated by an NN is defined not only by the parameterization that is being emulated, but by the entirety of the
atmospheric model environment: the dynamical core, the suit of physical parameterizations, and the set of configuration parameters
for both. Once any of these is modified, the set of possible model states is modified as well, possibly now including states that were
absent in the NN’s training data set. It is natural to ask how much of a change in the model’s phase space can a statistical model like
the NN tolerate? The answer will also provide an insight into how an NN emulation might fare under a change in boundary conditions,
such as a change in greenhouse gas concentrations.

2 FV3 GFS experiments with 2011 GFS LW and SW NN Radiation

NN emulations of the LW and SW radiative transfer parameterizations, originally developed within the framework of the 2011 versions
of GFS and CFS, were incorporated into the preoperational version of FV3 GFS. They can be used in place of the default RRTMG LW
v4.82 and SW v3.8.

FV3 GFS differs from the 2011 version of GFS in a number of ways, most significant of which are the new dynamical core
(FV3), microphysical parameterization (GFDL MP), PBL scheme (Hybrid EDMF), and a different set of values of tuning parameters.
The most consequential change appears to be the replacement of the Zhao-Carr microphysics with the GFDL scheme. The reasons
for this are twofold. The most important is a design choice made during development of the LW NN. Inputs to the RRTMG LW
parameterization include, among others, vertical profiles of temperature, specific humidity, cloud fraction, liquid water path, ice water
path, effective radius of liquid droplets, and effective radius of ice crystals. The last five profiles are calculated by the microphysical
parameterization from the first two and are correlated with one another. Since profiles of specific humidity and temperature are already
inputs to the LW NN, inclusion of only one cloud-related profile (cloud fraction) allows the NN to emulate the remaining four. In
effect, LW NN emulates not only the radiative transfer parameterization, but also calculations of cloud properties by microphysics.
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Figure 1: Full NN radiation vs control, Zhao-Carr MP, day 3-10 average of a C96 forecast initialized at 00Z on 8/1/17.

Consequently, when the microphysical parameterization is replaced, the internal representation of cloud properties in the NN is no
longer consistent with the rest of the model.

Another possible contributing factor is that the change in microphysical parameterization leads to the near doubling of the model’s
prognostic variables from 7 to 12, and to the proportional increase in dimensionality of the physical phase space of the model. As a
result, the set of possible model states in FV3 GFS is very different from a mathematical standpoint from the 2011 model version. Even
though the vectors of inputs to the radiative transfer parameterizations remain the same, they are obtained by mapping from a very
different mathematical object, potentially increasing the probability that a given input vector lies outside of the NNs original training
data set.

These fundamental physical and mathematical inconsistencies between the 2011 GFS NN and FV3 GFS environment have led us
to replace the GFDL microphysics with the Zhao-Carr scheme that was used to generate the 2011 NN training set. It is possible or
even likely that the choice of tuning parameters in Zhao-Carr microphysics is different in FV3 GFS then what was used in the 2011
model (and what is implicitly built in into the NN). Therefore, we tune the value of the dimensionless coefficient of autoconversion of
ice to snow, doubling it from 8e-4 to 16e-4 in the NN run, but keep it unchanged in the control.

Figure 1 shows averages over days 3-10 of a 10-day forecast initialized at 00Z on 08/01/17 at C96L64 resolution (∼ 100 km
horizontal grid size) produced by the current pre-operational FV3 GFS with Zhao-Carr MP (control) and the same model using both
LW and SW NNs. The largest discrepancy is in outgoing SW at TOA (Fig. 1c), while discrepancies in incoming SW (Fig. 1a) and
outgoing LW (Fig. 1b) at TOA are within observational uncertainties, as are the rest of radiative fluxes (not shown). Precipitation
(Fig. 1d) is to the first order determined by the atmospheric energy balance, and differs only by 0.01 mm/day between the two runs.
Overall, these results indicate significant robustness in the NN emulations with respect to the changes in the model, at least in the
limited number of experiments. The NN performs like a plausible physical parameterization, tolerating the aforementioned significant
changes in the model, provided that fundamental assumptions about the host model (like cloud properties) made during NN design did
not change significantly.

The next step in our project is to generate the NN training data set using the FV3 GFS (including GFDL MP and all other upgrades)
with the goal of calling NN emulations of the radiative transfer parameterizations at every physical time step.
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