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Introduction  
The National Centers for Environmental Prediction (NCEP) of NOAA provide weather guidance to the 
United States National Weather Service (NWS). The UnRestricted Mesoscale Analysis (URMA) is 
designed as an extension to the Real-Time Mesoscale Analysis System [1] to provide the most accurate, 
gridded analysis of near-surface sensible weather elements, cloud fields, and significant wave height 
(SWH) with a six-hour lag. The URMA products are disseminated to forecasting offices, serve as the 
analysis of record for the National Digital Forecast Database [2], and are used in calibrating the National 
Blend of Models [3]. Since version 2.6, implemented in December of 2018, the URMA has provided a 
SWH analysis for the Contiguous United States (CONUS) [4]. This paper explores the expansion of 
URMA for SWH to Alaska (AK), Hawaii (HI), and Puerto Rico (PR) – the OCONUS – domains, as well 
as the system upgrades in the next URMA generation, version 2.7. 

URMA System for Significant Wave Height 
URMA is a two-dimensional application of the community Gridpoint Statistical Interpolation (GSI) data 
assimilation system [5], which was recently upgraded to provide an analysis of SWH. The nominal spatial 
resolution of the analysis is 2.5 km for CONUS, HI, and PR, and it is 3 km for AK. SWH observations 
are currently assimilated from five satellites: Jason-2 and -3, Cryosat-2, Saral/Altika, and Sentinel-3; and 
also from in-situ SWH (buoys, drifters, and ships of opportunity). The background field is provided by 
the operational deterministic wave prediction system, known as multi_1, based on the WAVEWATCH 
III® model [6]. The preprocessing of the background is independent of the prediction system; and is 
based on the wgrib2 utility [7], which primarily involves interpolating and re-projecting the SWH 
background field on the appropriate URMA domain. Advantages of this upgrade include i) a significant 
reduction of the preprocessing time, by approximately ten times, and ii) the GSI can provide analysis of 
SWH with background fields from any wave model or blend of SWH predictions, even with different 
resolutions.  

The default GSI background error properties were also calibrated for nearshore applications; the error 
variance is set to 0.4m2 and the correlation length 150km. For the four URMA domains, both variance 
and correlation lengths were estimated locally and provided through external files. An analysis of 
monthly model prediction and buoy data for 2015 and 2016 provided the estimated values of the 
background error. The length of the temporal window of the analysis is 3 hours according to the estimated 
temporal decorrelation length and the real-time availability of the SWH observations. 

Analysis of Significant Wave Height for OCONUS 
The URMA was deployed and calibrated for the three URMA OCONUS domains. The analysis was 
verified regarding bias and Root Mean Square Error (RMSE). As expected, the error statistics of the 
analysis are significantly reduced in comparison with the error statistics of the background field, Figure 1. 
One limitation is the small number of observations, for instance for PR, there are only three permanent, 
nearshore buoys and no satellite coverage. 



 
Figure 1. Time series of error statistics (top: bias, bottom: RMSE) for PR, HI and AK (from left to right), of the first guess (blue) 
and the analysis (red).  

Summary 
With the next upgrade of NCEP’s mesoscale analysis systems  tentatively scheduled for  the first quarter 
of 2019, URMA will provide analysis of SWH for  most domains of the NWS (CONUS, AK, HI and PR) 
and it will satisfy a long-awaited  request by forecasters and others stakeholders. As the first effort in 
wave data analysis at NCEP, major operational components were upgraded to achieve these results from 
the URMA. These upgrades include the standardization of the wave data streams and modifications to the 
core of the GSI and to the pre- and post-processing of the URMA.  

For all the domains, the difference between the analysis and observations was significantly decreased in 
comparison with the difference of the background field from the observations. The average bias is in 
principle 0 m and the RMSE is reduced more than 50 percent, lying at the order of the observations’ 
uncertainty. The limiting factor for increasing the accuracy of the analysis is the lack of observations and 
the location of the existing observations especially for the smaller domains (HI and PR), where satellite 
observations are less frequent.  

By adding the SWH to URMA, the main benefit for the research and operational communities is the 
development of a complete and transferable methodology for the analysis of SWH. Additional benefits 
include that it is based on publicly available, community software, follows well laid out steps, has 
undergone extensive testing in four different operational configurations, and is relatively computationally 
efficient. 
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Introduction 
Presently RTOFS (Real Time Ocean Forecast System)-Global (Mehra et al., 2015), an operational system at National Centers 
for Global Prediction (NCEP), produces daily ocean forecasts at 1/12° resolution in the global domain. RTOFS version 1.1’s 
core uses the Hybrid Coordinates Ocean Model (HYCOM, Bleck 2002) at 1/12° resolution and 41 vertical hybrid layers 
coupled with the Los Alamos Community sea ICE (CICE) model. The model is initialized daily from analyses produced at the 
U.S. Naval Oceanographic Office (Metzger et al., 2014). RTOFS generates daily forecasts for 2 days in the past and 8 days in 
the future using NCEP atmospheric forcing.  
The production at NCEP of daily ocean analyses by coupling RTOFS to the Navy Coupled Ocean Data Assimilation (NCODA) 
system (Cummings and Smedstad, 2013) is under development.    
 
Simulations 
We present results of daily analyses and 1-day forecasts produced for two model configurations.  The first uses 
HYCOM+CICE cycled with NCODA 3Dvar on a Global 1/12° horizontal resolution domain, and the second uses HYCOM 
cycled with NCODA 3Dvar on a Gulf of Mexico 1/25° domain. The global domain uses 41 vertical hybrid layers, while the 
Gulf of Mexico domain uses 36 layers. Both simulations are initialized using the 1/12° NAVOCEANO hindcast valid on 31 
January 2017. Daily NAVOCEANO hindcasts are used as nesting boundary conditions for the Gulf of Mexico high resolution 
(1/25°) model. The Gulf of Mexico simulation covers February-March 2017, while the global simulation is being advanced 
through 2017.  
The simulations are forced with analysis quality forcing from the NOAA/NCEP Global Data Assimilation System (GDAS) for 
2017.  
Externally produced quality controlled data are used in this study to test the assimilation procedure, while the NCEP 
production of quality control (QC) ocean data is presently being developed for near real time. The observational data 
consists of the following: sea surface height (SSH) from the CryoSat, Jason, Sentinel, Altika altimeters; sea surface 
temperature (SST) retrievals from NOAA (18,19), and METOP (A,B); surface temperature from in-situ measurements (fixed 
and drifting buoys, ships); subsurface profiles of temperature and salinity from Argo, XBT, and CTD; and sea ice coverage 
from SSMI/S and AMSR2.  
The 3D-VAR analysis is performed using a 24-hour update cycle with the analysis time centered on the update cycle 
interval. The observations are pre-processed using the following methods: altimeter sea surface height is incorporated 
using bi-monthly climatological relationships between SSH (dynamic height) and temperature and salinity at depth in the 
form of synthetic temperature and salinity profiles; SST observations are averaged to form super-observations to remove 
data redundancies using local correlation length scales; background error variances are computed from a 15-day time 
history of forecast differences using forecasts separated by a 48-hour time interval (twice the analysis update cycle). The 
NCODA analysis is done directly on the HYCOM horizontal grid (tri-polar for global, Mercator for Gulf of Mexico), and uses 
hybrid vertical coordinates valid at the analysis time.   
The 3D-VAR analysis increments for temperature, salinity, velocity and layer thickness are incorporated into the forecast 
model using an incremental analysis update procedure. The global ice coverage analysis was incorporated through the CICE 
model. For the global domain, the analysis increments are inserted into the forecast model starting 3 hours earlier than the 
analysis time.  The forecast is then issued from this balanced initial state. 
 
Results  
For the global simulation, SST and Argo float verifications show small biases; the RMS verification error of 0.5°C for SST and 
0.85°C for Argo profiles are stable, with SST RMS error slightly increasing in the Northern Hemisphere summer. The global 
SSH for the end of July shows the main features of the ocean circulation (Figure 1).  
For both resolutions, the Loop Current and extension position are in agreement with various SST analyses (NOAA-RTG, 
NOAA-AVHRR). The Gulf of Mexico 1/25°circulation develops a relatively more intense loop current (3-5Sv, not shown) than 
in the global simulation. The high resolution Gulf of Mexico simulation SST seems to reproduce the NOAA/AVHRR 
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SSTanalysis slightly better than the global simulation, as for the westward plume off the Loop Current (Figure 2).

 
Figure 1. Left: SST verification: RMS error and mean bias, and data counts, Feb-July; center: same for Argo float temperature 
verification; right: SSH (1 day forecast) for July 30 2017. 

 

 
 

Figure 2. Top: Gulf of Mexico speed for March 26, from the global 1/12° (left) and Gulf of Mexico 1/25° (right) hindcasts. Bottom: SST 
(same day) from the global hindcast (left), Gulf of Mexico hindcast (center) and NOAA/AVHRR SST analysis (right)  
 
At the end of July, the global simulation shows good agreement between the model SST and NOAA-AVHRR analysis for the 
Gulf of Mexico and the loop current signal (Figure 3).  

 
Figure 3. Left: SST from the global simulation for July 29, 2017; right:  NOAA-AVHRR analysis for the same day. 
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 The NOAA Ecological Forecasting Roadmap (EFR) for 2015-2019 states that its objective is “to 

provide dependable, higher quality forecast products, derived from the successful transition of research 
and development into useful applications….”  In support of this NOAA-approved roadmap, this project 
proposes to evaluate different approaches to develop a prototype foundational global biogeochemical 
model within NOAA’s global operational Real-Time Ocean Forecast System (RTOFS-Global) [1] to 
reliably provide the global modeling fields required to support ecological forecasts designed by EFR 
technical teams in a modular and expandable fashion. In particular, the objective is to establish a 
component for the national ocean modeling ‘backbone’ that will generate global predictions of physical 
and biogeochemical (BGC) variables of interest in ecological assessments (e.g., temperature, nutrients 
phytoplankton, oxygen, carbon and Chl-a) on a regional scale, which would enable regional applications 
to include the broader global context (forcings and fluxes) in their local/regional use. 

In this study, using combinations of 1) the HYbrid Coordinate Ocean Model (HYCOM), ocean 
modeling component of the RTOFS-Global and 2) a multi-component BGC model [2][3], we present 
preliminary results from a series of numerical experiments run for the global domain.  Within the context 
of NOAA’s on-going Ecological Forecasting Roadmap (EFR) efforts, we are also considering the 
suitability, at short- to mid-range time scales, of the proposed approaches for building biogeochemical 
data assimilation capabilities into the current operational system.  

The HYbrid Coordinate Ocean Model (HYCOM; GLBb0.08 hereafter) with cylindrical (78.64°S 
– 66°S); recti-linear coordinate (66°S – 47°N); and an Arctic bipolar patch (>47°N) is used. HYCOM has 
1/12-th degree horizontal resolution and 41 vertical coordinates employing hybrid layers following 
isopycnals in the deep sea, z-levels near the surface and terrain-following σ-coordinates in the coastal 
areas [4]. K-Profile Parameterization (KPP) [5] is used as a vertical mixing scheme. GLBb0.08 is forced 
by hourly atmospheric fluxes from NOAA’s Global Data Assimilation System (GDAS).  

 Two experiments are configured with different minimal complexity in biogeochemical governing 
equations: 1) the Nutrient-Phytoplankton-Zooplankton (NPZ) model [2]; and 2) the Nutrient-
Phytoplankton-Zooplankton-Detritus (NPZD) model [3]. Figure 1 presents schematic diagrams of the two 
different BGC models. The major difference between the two includes the number of state equations that 
can simulate low-trophic level BGC components. The NPZD model includes detritus to more realistically 
parameterize cycling of organic particulate matter back to the dissolved inorganic nutrients’ pool. In 
general, due to their small number of state variables, simple models such as NPZ or NPZD have 
advantages in parameterization, initialization and validation of the internal ecosystem dynamics with 
standard and commonly available 
biogeochemical oceanographic 
measurements (e.g., chlorophyll, 
nutrients, zooplankton biomass). This 
reduces uncertainties and 
computational costs significantly 
compared to other available complex 
models. However, even with the 
small number of state variables, the 
parameterization and validation of 
marine ecological processes 
sometimes remain challenging if 
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observations are sparse and incomplete. In addition, the simple models also have limitations in 
representing complicated ecosystem structure and functions of the real ocean that require additional 
measurements or experiments. This may render them less realistic, but overall, simple models are still 
sufficient to simulate a wide range of ecosystem phenomena. 

All simulations presented here were initialized at February 1, 2017 with the HadOCC monthly 
mean. Model initialization for physical variables is based on the previous runs from RTOFS-Global and 
initial conditions for the BGC variables (e.g., lower trophic level components) are obtained from the 
Hadley Ocean Carbon Cycle Model (HadOCC) [6] for a realistic initialization. The simulation period is 
20 days. Figure 2 presents examples of sea surface height (SSH), nitrate (NO3

-) and phytoplankton 
concentration for the two numerical experiments. As tracers are not designed to influence physical 
properties, sea surface height (SSH) structure is identical between the two model simulations, whereas 
there is a noticeable discrepancy in the distribution of nitrate and phytoplankton, presumably due to 
varying ecosystem dynamics between the two models. Further investigations are planned for the future. 

Figure 2. Comparisons between NPZ (top) and NPZD model (bottom) for sea surface height (1st column), 
nitrate nitrogen (2nd column), and phytoplankton nitrogen (3rd column). These snapshots are taken at 5 days 
(February 5, 2017) after model initialization. 
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Recent advances in biogeochemical (BGC) models and data collection programs with greater spatio-

temporal coverage make it possible “to predict and assess trends of marine biogeochemical cycles and to 
safeguard marine ecosystems” [1].  Implementation of various data assimilation (DA) schemes for the National 
Center for Environmental Prediction (NCEP) operational Real-Time Ocean Forecast System (RTOFS-Global), 
along with data streams of real-time/near-real-time physical, biological, and chemical data allow the analysis and 
forecasting of global BGC states.  The main motivation of this study, funded by Joint Polar Satellite System 
(JPSS) - Proving Ground and Risk Reduction (PGRR) Program at NOAA’s National Environmental Satellite, 
Data, and Information Service (NESDIS), is to demonstrate how various satellite ocean color products can be 
used in a global ocean modeling framework.  

This study presents preliminary results from a series of numerical experiments run for a Gulf of Mexico 
testbed, exploring combinations from: 1) science-quality ocean color products from the Visible Infrared Imager 
Radiometer Suite (VIIRS) on the Joint Polar Satellite System (JPSS); 2) the HYbrid Coordinate Ocean Model 
(HYCOM), the ocean modeling component of the RTOFS; 3) a 3-component Nutrient-Phytoplankton-
Zooplankton (NPZ) model [2]; and 4) the NOAA version of the Navy Coupled Ocean Data Assimilation 
(NCODA) system [3]. Within the context of NOAA’s on-going Ecological Forecasting Roadmap (EFR) efforts, 
we examine the suitability, at short- to mid-range time scales, of the proposed approaches for building 
biogeochemical data assimilation capabilities into the current operational system.  

The global HYCOM (GLBb0.08 hereafter), with recti-linear coordinates (66°S – 47°N) and an Arctic 
bipolar patch (>47°N), is used. This HYCOM has 1/12-th degree horizontal resolution and vertical coordinates 
employing 41 layers, following isopycnals in the deep sea, z-levels near the surface, and terrain-following σ-
coordinates near coastal areas [4]. K-Profile Parameterization (KPP) [5] is used as the vertical mixing scheme. 
GLBb0.08 is forced by hourly atmospheric fluxes from NOAA’s Global Data Assimilation System (GDAS). For 
this effort, the Gulf of Mexico (GOMl0.04) is selected as the testbed for various DA numerical experiments. 
GOMl0.04 has 1/25-th degree horizontal resolution and vertical coordinates with 36 layers following isopycnals. 
For a realistic initialization, the physical state variables are initialized with the previous run of RTOFS-Global, 
with the initial conditions for the BGC variables (NPZ concentrations) being obtained from the Hadley Ocean 
Carbon Cycle Model (HadOCC) [6]. 

The NCODA system is an oceanographic 
implementation of the three-dimensional 
variational (3DVAR) technique. NCODA 
3DVAR, a unified and flexible oceanographic 
analysis system (Figure 1), is transitioning to 
NCEP for operational use as the data assimilation 
component for RTOFS-Global. The analysis 
variables include temperature, salinity, 
geopotential (dynamic height), u, v vector 
velocity components, and chlorophyll 
concentration from ocean color products. All 
ocean variables are analyzed simultaneously in 
three dimensions.  The horizontal correlations are 
multivariate in geopotential and velocity, thereby 
permitting adjustments to the mass fields to be 
correlated with adjustments to the flow fields. 

Figure 1.  A schematic diagram of ocean data assimilation in 
the NCODA system. Note that oceanographic and satellite data 
products are available as of 2018. 
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The velocity adjustments (or increments) are in geostrophic balance with the geopotential increments, which, in 
turn, are in hydrostatic agreement with the temperature and salinity increments. The chlorophyll assimilation is 
used to constrain the BGC properties of the ocean in the NPZ model. Two experiments are made: 1) a free mode 
with no data assimilation; and 2) a data-assimilative mode. For data assimilation, only physical oceanographic 
data from various platforms (e.g., satellite sea-surface height anomalies, satellite sea-surface temperatures, 
temperature and salinity profiles, etc) were assimilated. All simulations were initialized at February 1, 2017, with, 
as previously mentioned, physical state variables being restarted with RTOFS-Global simulations and BGC state 
variables being initialized with HadOCC model output. The simulation period is 20 days. Figure 2 presents 
examples of sea surface height (SSH), nitrate (NO3

-), and phytoplankton concentration for the free and data 
assimilative modes 10 days after initialization. It is noteworthy that the SSH structure becomes slightly different 
between the two simulations, which is also true for the BGC tracers. There are subtle discrepancies in the 
distributions of nitrate and phytoplankton, presumably due to changes in mesoscale eddy features. More 
investigation is required. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 2. Comparisons between free (top) and data-assimilative runs (bottom) for sea surface height (1st column), nitrate 
nitrogen (2nd column), and phytoplankton nitrogen (3rd column).  
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1. Introduction 

 

An experiment applying neural networks (NNs) to nonlinear wave ensemble averaging is conducted in the 
Gulf of Mexico (GOM). It is an approach that expands the traditional arithmetic ensemble mean (EM) to a 
nonlinear mapping that better captures the differences among the ensemble members. The NNs have the 
members of the Global Wave Ensemble System (GWES) as input, and NN outputs are trained using six NDBC 
buoys (42001, 42002, 42003, 42039, 42055, 42360). The variables selected for the study are 10-m wind 
speed (U10), significant wave height (Hs), and peak period (Tp) for the year of 2016. The first experiments 
testing NN architectures for GWES nonlinear wave ensemble averaging at single locations were reported by 
Campos et al. (2017). It was found that the best NN model was composed of two layers with 11 neurons at the 
intermediate layer, using a basis function of the hyperbolic tangent, sequential training, and the log function 
applied to time series of significant wave height. Equation 1 shows the final strategy of the NN simulation, 
where the simple arithmetic EM is first calculated and then the NN model is applied to model the residue 
(difference between the target value and EM). This method can focus the NN simulation on the nonlinear part, 
instead of simulating the whole signal with linear and nonlinear components (Krasnopolsky, 2013). It builds a 
more robust model that provides reliable ensemble averages at different metocean conditions and sea 
severities. 
 

                 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐸𝐸𝐸𝐸 + 𝑁𝑁𝑁𝑁𝑟𝑟(𝑝𝑝1, 𝑝𝑝2,⋯ , 𝑝𝑝𝑛𝑛) (1) 

2. Neural Network training and sensitivity tests 
 

At each particular grid point, the inputs of the NN consisted of 63 ensemble members (20 ensembles plus 
one control member, for U10, Hs, and Tp) plus the sine and cosine of time (to capture seasonality effects). To 
introduce space in the NN model, latitude and longitude were included for a total of 67 inputs. In order to 
determine  the complexity of the NN model required to obtain the optimal training, architectures with 12 
different numbers of neurons, 8 different filtering windows (time-domain), and 100 seeds for the random 
initialization were studied. We constructed different NNs for specific forecast days, from Day 0 to Day 10. The 
number of neurons and filtering windows (hours) using the moving average method are, respectively, 
𝑁𝑁 [ 2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 80, 200] and 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 [ 0, 24, 48, 96, 144, 192, 288, 480] hours. Two thirds of the 
available data was selected for training and 1/3 for the test set, using a cross-validation scheme with 3 cycles. 
 

 
Figure 1 – Scatter component of the RMSE (𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺) obtained for the NN training tests on forecast Day 0 (red), Day 5 (blue), and Day 10 
(black) for significant wave height Hs. Results involving different initializations and filtering windows were averaged to analyze the 
sensitivity to the number of neurons only. The solid line is the NN model results while the dashed line is the result for the ensemble mean 
(EM); shown to compare their performances. Points at the plots represent the number of neurons equal to 2, 5, 10, 15, 20, 25, 30, 35, 40, 
50, 80, and 200. 



 

Results obtained show that the bias is not very sensitive to the number of neurons so a few neurons are 
sufficient to improve the bias; however, the scatter error is highly sensitive to the number of neurons (Figure 
1). The scatter component of the RMSE (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, Mentaschi et al., 2013) and the correlation coefficient (𝐶𝐶𝐶𝐶) 
are continuously improved by higher number of neurons; however, when the number of neurons approaches 
40 to 50 neurons the results start deteriorating. Regarding the filtering window, optimum results were found 
between 48 to 192 hours; which is mainly because the moving average filtering removes high frequency noise 
from the signal which helps the NN to minimize the scatter error. The best NN configuration for each forecast 
day was independently selected for the final simulations and assessments. The first row of Figure 2 shows two 
significant improvements. The first is the benefit of the NCEP ensemble approach of GWES, indicating that the 
arithmetic ensemble mean has better skill than the control run. The second is the further improvement 
provided by the nonlinear ensemble averaging using NNs. Both are more evident at longer forecast times. 
 
 

 

 
Figure 2 – RMSE and CC as a function of forecast time  for U10 and Hs, at the top row, where the black curves are the GWES members, 
cyan is the deterministic (control) run, red the arithmetic ensemble mean (EM), and green the nonlinear ensemble averaging using NNs. 
The bottom row shows the maps of Hs related to Sep/02/2016 00Z (Hurricane Hermine), with different forecast times. 
 
 

3. Conclusions 
 

Our results show that using NN models demonstrates their main advantages at longer forecasts times. 
Although the NNs do not deal with physical aspects, the improvement of the NN experiment is not restricted to 
one variable, but the U10, Hs, and Tp have all benefited. It was verified that the conservative ensemble 
approach (EM) is excellent in reducing the scatter component of the errors but it does not improve the 
systematic bias, as was expected. The NN experiment described was able to reduce the systematic errors as 
well as the scatter error, proving to be a useful tool not only for bias correction but also to significantly improve 
the whole forecast. Error metrics applied to all variables and forecast ranges indicated that, apart from the bias 
of U10 in the Day-10 simulations, all the results using NNs proved to be better than the arithmetic mean (EM). 
The GOM maps of Figure 2 present an example for Hurricane Hermine, when the NNs better captured the 
extreme event than EM, especially at Day 5. 
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In this paper, a Neural Network (NN) model using vertical profiles (0-200m)  of temperature, salinity, 
and zonal velocity and sea surface height fields from the operational Real-Time Ocean Forecast 
System (ROTFS; Mehra, et al, 2011) is used to produce short-term global ocean color (OC: 
chlorophyll-a and KdPar) forecasts. The underlying scientific premise of this NN model is that ocean 
color fields — signatures of ocean biological processes — can be statistically correlated to upper 
ocean physical states. The NN model is trained over many months (July 2013 to December 2015) 
using NOAA Visible Infrared Imaging Radiometer Suite (VIIRS) science-quality ocean color fields 
and RTOFS inputs. Then the trained NN model is used for ocean color predictions for an independent 
data set from 2016.  The purpose of this preliminary study is to test the suitability of this coarse-
resolution NN model: (a) for initiating global ocean color predictions, (b) as a proof-of-concept for the 
NN model configuration, and (c) as a test case for embedding the NN ocean color model in future 
versions of the coupled seasonal forecasting system.  As shown in Figures 1 and 2, the coarse-
resolution NN model is able to successfully predict the OC fields over most of the tropical oceans, but 
there are many regions in the global oceans where the NN model has significant issues. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Time-Series plots of:  (a) global root-mean-square error, and (b) global cross-correlation for 
Neural Network daily chlorophyll-a and kdpar predictions for 2016.  
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Figure 2: Spatial plots of:  (a) root-mean-square error (mg/m3), and (b) cross-correlation (percent) for 
Neural Network daily chlorophyll-a predictions for 2016.  
 
In this coarse-resolution proof-of-concept, the 1/12-degree RTOFS inputs and 4-Km VIIRS ocean color 
fields were collocated into 1ox1o resolution for July 2013-December, 2016.  The test set spans 07/5/2013 
to 12/31/2015; and the validation set is from 1/1/2016 to 12/30/2016.  While the NN provides excellent 
results over many oceanic domains, there are significant errors over the continental shelves and the 
oligotropic subtropical gyres, where the signal-to-noise ratio is low with low potential predictability.  
Also, the NN performs significantly better for kdpar than for chlorophyll-a and for low values of 
chlorophyll-a. These results are  similar to that shown in Nadiga, et al. (2015) and Krasnopolsky, et al., 
(2017). The expected NOAA users of this new potential capability are NCEP, for improved ocean and 
coupled modeling (incorporating 2-way coupling to account for biological variability in weather/climate 
system), NMFS, for gap-filled ocean color predictions in fisheries monitoring, and NOS, for ocean color 
boundary conditions for coastal /estuarine modeling. 
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1. Introduction 

The most pronounced temporal changes of the thermal state of the upper ocean in middle and 
high latitudes are determined by the seasonal course of solar insolation and have an annual period. 
In some areas of the ocean, in addition to the annual cycle, higher harmonics may also be present. 
Harmonics of this kind having a half-year period were examined, for example, in [1] basing on 
processing the Argo observations. Here we are trying to trace the geography of such oscillations, 
their origin and mode structure using the simulations with the NEMO model. 

2. Model configuration 

For the analysis, the simulations with Version3.6 of the NEMO model [3], coupled with the ice 
model LIM3, were used. The simulations were performed with a one-degree horizontal resolution 
and 75 vertical levels (362 × 332 × 75 grid-points). The atmospheric forcing at the ocean surface was 
prescribed from the DFS5.2 data set [2]. During the model integration, the observational data from 
profiling Argo buoys were assimilated through the 3Dvar analysis and the computed sea ice 
concentrations were corrected by satellite observations using the nudging technique. The model 
output was averaged over 5 day intervals during overall simulation period 01.01.2001–31.12.2010. 

3. Geographical features of annual and semiannual cyclicity 

Figure 1a shows the frequency spectra of the upper ocean temperature fluctuations, obtained 
from the 01.01.2001–31.12.2010 simulation, and Figures 1b and 1c are the geographical distributions 
of the amplitudes of annual and semiannual oscillations. The amplitudes were evaluated as the 
coefficients of Fourier expansion. 

 

 

Figure 1. (a) Frequency spectra of the upper ocean temperature fluctuations for the global World Ocean 
(black), Northern Hemisphere (blue), Southern Hemisphere (green) and equatorial region (red). (b) and (c) The 
amplitudes of annual and semiannual oscillations correspondingly.  

 
As is seen from the Figure, the annual oscillations are most pronounced in the Northern 

Hemisphere, especially in the western parts of the oceans. This can be obviously explained by the 
influence of air masses carried from the continent regions by western winds and characterized by 
enhanced seasonal variations typical for continental climate conditions. The predominance of land 
over the ocean area in the Northern Hemisphere also explains the greater amplitude of annual 
fluctuations as compared with those in the Southern Hemisphere.  

In the near equatorial region, annual changes are less pronounced, and proportion of semi-
annual fluctuations increases. The both amplitude distributions in Figures 1b and 1c are generally 
similar to those obtained by Chen and Wang [1] from direct processing of Argo data. This similarity 
may be considered as a confirmation of consistency of the model results with observations. 

The semiannual components of the spectrum are of different origin in different regions. For 
example, in the Indian Ocean, the semiannual harmonic is generated by monsoonal processes with 
half year periodicity [4]. As is seen from Figure 2a, in the western part of the Arabian Sea this 

(b) (c) (a) 



harmonic corresponds to real oscillations with half year period. In contrast to this, in regions with 
water temperature remaining for some time near the freezing point during winter season the 
semiannual harmonic is just an artifact of the annual changes differing in form from sinusoidal 
(Figure 2b). It can be assumed that the actual semiannual nature of temperature fluctuations occurs 
in places where the ratio of the amplitudes of the semiannual component to the annual one is 
comparable to or greater than one. This takes place in the near equatorial belt (Figure 2c). 

        
Figure 2. Temporal changes of the upper ocean temperature in the western part of the Arabian Sea (a), in the 
western part of the Sea of Okhotsk (b) and geographical distribution of the ratio of the amplitudes of 
semiannual and annual harmonics (c). 

4. Modal structure 

The semiannual cycle may also be traced in the EOF coefficients (Figure 3). The EOFs (empirical 
orthogonal functions) and expansion coefficients were computed using as input model time series 
from which the annual changes were filtered out. Calculated in this way the first EOF mode 
characterizes to semiannual changes, and the second mode characterizes oscillations with periods of 
4–5 years. However, in order to obtain more reliable estimates of such oscillations, longer 
simulations are required, which are planned to be performed in the near future. 

 
 

Figure 3. The geography of the first and second 
EOF modes of the upper ocean temperature 
with filtered seasonal changes (left panels) and 
the corresponding expansion coefficients for 
01.01.2001–31.12.2010 (right panels). 
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We are testing the hypothesis that nonlinear-systems like ocean dynamics are generating variability by 

themselves without any external forcing. We examine the output of a three-layer nested numerical simulation 

which was performed with an almost global model with 1° grid resolution, an embedded West Pacific model 

(WestPac) with 0.2° grid resolution, and an embedded Southern China Sea (SCS) model with 0.04° grid resolution. 

The variability, which can be conceptualized as “noise”, is mostly created in the model component of higher grid 

resolution. 

 

The model used is Hybrid Coordinate Ocean Model (HYCOM) that is exposed to periodic climatological 

atmospheric forcing, with a fixed annual cycle but without weather disturbances. The atmospheric forcing comes 

from the Comprehensive Ocean-Atmosphere Data set (COADS). The simulation regions are shown in Figure 1 (see 

Tang et al., 2018). We analyzed daily averages for every layer model over a 21-year period. 

 

We measure the amount of variability by the variance of daily values (centered on the long-term monthly means) 

at each grid point. The variable considered is the daily barotropic stream function (BS). The maps in Figure 2 show 

the spatial distributions of the logarithm of BS variances in the SCS in two seasons (summer and winter monsoon) 

simulated by three models (global, West-Pacific and South China Sea). Table 1 lists the daily BS variances 

averaged across the SCS. 

 

The variances in the WestPac are somewhat increased compared to the global run; for the SCS-simulation we find 

substantially larger variances. We propose that the models ability to generate eddies in the South China Sea is the 

main cause for the increase in variability. 

 

Our experiments support the concept that dynamical models of the ocean generate internal, unprovoked variability. 

This “noise” generation is stronger in models with higher resolution. Indeed such behavior is to be expected 

from the "stochastic climate model" (Hasselmann, 1976). This noise represents for certain issues a nuisance 

(hiding real effects of forcing) but is also constitutive for the dynamical properties of the system (von Storch et 

al., 2001). “Noise” has significant implications for issues like “detection and attribution of climate change” 

and for numerical experimentation with ocean models. 
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Fig. 1 The regions of the three-nested numerical simulation. 
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Fig.2 The spatial distributions of logarithm of BS variances in the SCS simulated by the global 

model (a, d), WestPac model (b, e) and the SCS model (c, f). 

 
 

 
Table 1 The spatial averages of the daily BS variances in the SCS simulated by three models 

 

 
Global model 

(SV2) 

WestPac Model 

(SV2) 

SCS Model 

(Sv2) 

Spring 0.8396 1.2777 1.7187 

Summer 0.5801 0.8328 1.6161 

Fall 2.2413 2.5619 3.2377 

Winter 1.0744 1.4574 1.9925 

Year 3.2975 5.3550 6.1782 
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