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1. Introduction
The background error covariance matrix is one of the main components of a data 

assimilation system. At CPTEC, the past operational data assimilation system ran using 
available background error covariance matrices that used background information from other 
models/systems. CPTEC started to use the GSI as its operational data assimilation system, a 
GFS based background error covariance matrix was used as a starting point. Currently, CPTEC 
is preparing a new version of its global data assimilation system and a new background error 
covariance matrix was constructed using the NMC method and the pairs of forecasts of its 
global circulation model, the Brazilian Atmospheric Model (BAM, Figueroa et al., 2016). In 
this present work, we show the results of its application in a 3DVar data assimilation system 
by means of single observation assimilation experiment. 

2. CPTEC New Background Error Covariance Matrix
The application of a new background error covariance matrix for a 3DVar global data 

assimilation system is shown here at a low resolution (TQ0062L028, roughly 200 km near the 
Equator with 28 sigma levels). This version was also applied to test a hybrid 3DVar system 
(CPTEC has plans to make it a future update to its global data assimilation). This matrix was 
calculated using the NMC method from a database of 1,460 pairs of 48 and 24 hours forecasts. 

3. Single Observation Test Application within GSI and Future Plans
In order to test the new background error covariance matrix, we made a series of single 

observation tests. The single observation test is run under the GSI framework using a pure 
3DVar system and makes use of a synthetic observation. With this type of tests, it is possible 
to control the magnitude of the observation error and innovation. Figure 1 shows the result of 
a single observation assimilation of zonal wind component placed at 250hPa, and centered at 
the point with coordinates 45oN, 180oW (lat x lon, respectively). Both the observation error 
and innovation magnitude were adjusted to 1 ms-1. As the GSI allows for the application of 
the error covariances using an anisotropic filter, we also tested the application of the new 
background error covariance matrix using the anisotropic filter and compared its result against 
the GSI default matrix (using the same configuration) in order to see how the covariances 
accommodate the analysis increment. As can be seen, with the BAM/CPTEC background 
error covariance matrix, the resulting zonal wind analysis increment is broader than its GFS/
NCEP counterpart. This may be due to a more detailed covariance structures (not shown) due 
to the use of a high number of forecast pairs. On the other hand, the application of the new 
BAM-based background error matrix should be properly tuned within GSI. 

A complete version of this development was recently published in the Brazilian Journal 
of Meteorology, in which a more complete characterization of the new background error 
covariance matrix is made, accounting for its spatial features and quantitative characteristics.  



Figure 1. Horizontal wind (isolines) analysis increments (shaded) at 250 hPa, using the background error 
covariances matrices from CPTEC and NCEP, respectively. In the first row are shown the latitudinal sections, 

in the second rows, the longitudinal sections and in the third row, the vertical sections. At left, the analysis 
increment in isotropic and at right, the analysis increment is anisotropic. 
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1. Introduction 

Recent developments in atmospheric data assimilation have demonstrated that hybrid 

methods are advantageous in allowing the introduction of background flow dependency into 

the specification of error correlations. This is one of the most challenging features to attain in 

an operational data assimilation system. At the beginning of its operations, CPTEC has 

experienced with its global circulation model the Optimum Interpolation technique, the 

Physical-space Statistical Analysis System (PSAS) and recently, the Gridpoint Statistical 

Interpolation (GSI) with the CPTEC Brazilian Atmospheric Model (BAM). The application of 

PSAS and GSI at CPTEC is the result of long-term collaboration between the CPTEC and the 

Global Modeling and Assimilation Office (GMAO/NASA). At the beginning of its operational 

use at the center, the GSI/3DVar were run using a static background error covariance matrix. 

This undergoing work reports some initial results with the application of a hybrid 3DVar data 

assimilation system using a linear combination of a static background error covariance matrix 

with an Ensemble Kalman (EnKF) filter based one. 
 
2. A Global Hybrid 3DVar System for CPTEC 

The CPTEC global hybrid 3DVar system is based on coupling between the GSI 

system (which provides the data assimilation framework including the traditional 3DVar 

method, an EnKF system and the framework through which the hybrid covariances are drawn) 

and the Brazilian Atmospheric Model (BAM, Figueroa et al., 2016). The observations 

assimilated within the system come from the Global Telecommunication System (GTS), which 

includes surface and upper-air observations, atmospheric retrievals and radiance 

observations from multiple satellites and sensors. The static part of the hybrid 3DVar 

background error covariance is modeled with the National Meteorological Center (NMC) 

method using pairs of 24-hour and 48-hour forecasts from the BAM model. In experimental 

mode, a database of 1,460 forecast pairs has been used to calculate the background error 

covariance matrix in a TQ0062L028 model resolution (roughly 200 km near the Equator with 

28 sigma levels). The data assimilation cycle using the hybrid system applies the hybrid 

background error covariance matrix during the 3DVar minimization procedure (using the 

same methodology as described in Wang et al., 2013). 
 
3. Resulting Hybrid Analysis and Future Plans 

The hybrid 3DVar analysis cycle was tested using 50% and 75% of ensemble (40 

members) contribution to the static part of the background error covariance matrix. The 

experiments included a control run with the NCEP analysis (no data assimilation), another 

control run with a pure 3DVar analysis and two runs using the hybrid analysis (with 50% 

and 75% of ensemble contribution). As a result, it was found that the hybrid (deterministic) 

analysis allowed the BAM model to perform better when 75% of ensemble contribution 

were used to determine the background error covariance (experiment EnSRF75). In terms of 

model skill, in general, the BAM model performed better with improvements in its prediction 

ability. Figure 1 shows the Anomaly Correlation for specific moisture at 925 hPa and zonal wind 

at 850 hPa for the South America region and for the whole Globe. As can be seen, the 

application of the hybrid method has a great advantage over the current and pure 3DVar in 

use at the center. Within the steep topography of the Andes 
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Mountains in South America, the forecast of moist processes, especially rain, is difficult. 

Improving the forecast of these processes can be also beneficial for the precipitation forecasts 

of the BAM model. Also, improving the wind forecasts (e.g., Figure 1c) is also beneficial 

because of the moisture transport by the Low-Level Jet to the southeast region of the 

continent. Further steps with the hybrid analysis should include tests with high resolution in 

order to properly access the precipitation forecasts. 
 

 
a) b) 

 
 
 
 
 
 
 
 
 
 

 
c) d) 

 
 
 
 
 
 
 
 
 
 

Figure 1. 5-day forecast skill for evaluated regions GL (global) and SA (South America). Dashed black lines: 

REF experiment (using the NCEP analyses); solid red line: pure 3DVar experiment; green line: EnSRF50 (using 

the 50% of the ensemble) and blue line: EnSRF75 (using 75% of ensemble). All figures are presented with their 

respective Student’s t-test, where a 95% confidence interval is held. 

 
CPTEC has also a global Ensemble Prediction System (EPS) which provides the center 

with extended range forecasts (up to 15 days). Currently, this system uses a perturbation 

approach based on an Empirical Orthogonal Functions methodology in order to provide the 

optimum perturbations to generate the ensemble members. As the tested hybrid 3DVar system 

makes use of an EnKF to both update the background ensemble members and to control the 

ensemble spread, a study is being made to access the ability of this system to provide an 

ensemble of analyses to serve as an upgrade to the current EPS system. Preliminary results show 

that at this lower analysis/model resolution, a proper configuration of the model should be 

defined to take in advantage the characteristics of the new system. 
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Introduction
A fully flow-dependent Proactive Quality Control (PQC; Ota et al., 2013; Hotta et al., 2017) that rejects detrimental observations
identified by ensemble forecast sensitivity to observation (EFSO; Kalnay et al., 2012) was proposed to resolve the forecast skill
dropout issues (Kumar et al., 2017). Successful and encouraging results obtained from non-cycling experiments using Global
Forecasting System (GFS) from the National Centers for Environmental Prediction (NCEP), that denying the detrimental
observations identified by EFSO with 24-hr and 6-hr verification lead-time both reduced forecast errors in several forecast skill
dropout cases. In this study, we begin the examination of cycling PQC using the same complex GFS model.

Method and Experimental Setup
PQC corrects the analysis based on the observational impact from EFSO. Suppose the desired PQC time is t = 0 in a DA
system with 6-hour assimilation window, the procedures are as follows:

1. Run standard DA cycle from t =−6 to t = 6 to get the analysis at t = 6 for verification.

2. Obtain 12-hour and 6-hour forecasts from t =−6 and t = 0.

3. Perform 6-hour EFSO with the above information to determine which observations should be rejected at t = 0.

4. PQC update the analysis without the rejected observations.

In this study, we utilize the GFS-LETKF system developed by Lien (2014) to test cycling PQC in the complex and realistic
model. The resolution of GFS is T62 in order to save disk space and computational time. The assimilated observations are the
prepBUFR data provided by NCEP. The experimental period spans from Jan/01/2008 to Feb/06/2008 and the first 5 days are
discarded as DA spin-up period. In addition, the LETKF DA scheme with ensemble size of 32 instead of the GSI Hybrid EnVar
used in operation is chosen for simplifying the procedure and expedition of the experiments since PQC should have little or no
dependence on the DA methods. We chose 6 hours as the forecast error verification lead-time for EFSO impact evaluation and
reject approximately 10 % of the overall most detrimental observations.

Results
We show the monthly mean of the GFS forecast relative improvement (%) by cycling PQC in Figure 1. It is clear that for all
regions and for the three listed key variables, the short-term forecast can be improved by as much as 10 % or more for higher
latitudes. Then the improvement decreases with forecast time but saturates at around 5 % (not 0 %) even after 5 days.

The cycling PQC improvement is further broken down to direct impact (non-cycling PQC) and indirect (accumulated)
impact (original analysis before PQC in cycling PQC experiment). As mentioned earlier, the direct impact comes from the PQC
update from the original analysis at each cycle, which is equivalent to the non-cycling PQC. The main benefit of cycling PQC
is the accumulation of the direct improvements throughout the past cycles that the improved forecast initiated from the PQC
corrected analysis serves as a much accurate background and further boost the accuracy of the following analyses. We separate
the indirect impact from the full impact by verifying the forecasts initiated not from the PQC corrected analysis but the original
analysis before PQC. As we can see, the major advantage of cycling PQC is from the accumulation of past direct improvements
and the independent direct improvement is only 2 % at most. It is also noticeable that the benefit from the direct impact has a
larger contribution to the full impact in the tropics and the southern hemisphere comparing to that in the northern hemisphere.
This indicates that the PQC improvement in the northern hemisphere has a shorter memory on average.

Discussion
The fact that the accumulation of past impact contributes to a major portion of the full impact of cycling PQC has two important
implications. One is that the PQC improvement has a long-term memory and remains in the system even after several cycles of
DA. Secondly, this supports the feasibility of implementing PQC in operational NWP. In order to deliver the forecast products
on time, the operational centers need to initiate the forecast as soon as the analysis is completed, so we can only afford to
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Figure 1. Monthly mean relative forecast error (RMSE) reduction percentage initiated from cycling PQC analysis, original
analysis in cycling PQC experiment, and non-cycling PQC in u-component wind at 500 hPa, temperature at 500 hPa, and
specific humidity at 700 hPa for the northern hemisphere (20N-90N), the tropics(20N-20S), and the southern
hemisphere(20S-90S) throughout 5 days.

perform PQC after the current forecast is out, meaning the direct impact from PQC is not available in operation. Therefore,
the huge portion of accumulated indirect impact sends a very encouraging message that even without the direct impact of the
current observations we can still get a forecast improvement close to the full impact.
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Introduction
Proactive Quality Control (PQC; Ota et al., 2013; Hotta et al., 2017) based on EFSO was proposed aiming to resolve the
forecast skill dropout issues (Kumar et al., 2017) through identification and rejection of detrimental observations that may be
harmful to the forecast. They showed using the Global Forecasting System (GFS) from the National Centers for Environmental
Prediction (NCEP), that denying the detrimental observations identified by ensemble forecast sensitivity to observation (EFSO
Kalnay et al., 2012) with 24-hr and 6-hr verification lead-time both reduced forecast errors in several forecast skill dropout
cases. Hence, it was further proposed that PQC would be affordable in operational cycling to reduce or avoid skill dropouts in
an online fashion. A major potential benefit in cycling-PQC is that the improved forecast may serve as a better background and
lead to a cumulative improvement in the following analyses and forecasts. However, cycling-PQC has not been thoroughly
tested yet. Idealized simulation experiments in a controlled environment can provide insights on how to optimally set up cycling
PQC for realistic models.

Methods
The essential concept of PQC is to utilize the EFSO impact as observational QC for each DA cycle (e.g., 6 hours) for the
identification of detrimental observations. The analysis is then modified to avoid the impact of those identified detrimental
observations. It should be noted that EFSO cannot be computed until the next analysis becomes available for forecast
error verification. The PQC algorithm can be summarized as inserting additional steps (verifying analysis for EFSO, EFSO
computation, PQC analysis update, and the forecast from the updated analysis) into a standard DA cycle. The focus of this
study is to compare the performance of five possible PQC analysis updates defined in Table 1.

Table 1. PQC update methods

Methods Mechanism Change in KKK Change in Spread Repeat analysis Computational cost
PQC H Recompute KKK without rejected observations Large Increased Yes High
PQC R Recompute KKK with up-weighted RRR Large Increased Yes High
PQC K Reuse the original EFSO KKK None None No Low

PQC BmO Assimilate background minus observation Low Reduced (Serial update) Medium
PQC AmO Assimilate analysis minus observation Low Reduced (Serial update) Medium

Results
Figure 1 compares the performance of all proposed PQC methods using EFSO (verified at 6-steps) and with varying percentages
of rejected observations. Since the Kalman gain KKK of PQC R approaches that of PQC H asymptotically with increasing
observational error, it is not surprising that PQC H and PQC R methods perform more or less the same in terms of both analysis
and 30-step forecast error reduction. The errors are reduced the most when rejecting 10 % of the observations for the two
methods. It is somewhat surprising that PQC K, PQC BmO, and PQC AmO all outperform PQC H and PQC R, which are two
most commonly used data denial methods. For the analysis quality improvement, the obvious choice of the threshold shifts
towards 20%. PQC K does not show any degradation of analysis until rejecting more than 60 % of the observations, whereas
PQC BmO and PQC AmO stop showing improvement after 50% and even suffer from filter divergence beyond 60%. For the
forecast quality improvement, the dependence of PQC BmO and PQC AmO on the thresholds are qualitatively similar to that
in analysis performance. It is quite shocking to find that PQC K has nearly no dependence on the thresholds between 10-th and
60-th percentile, especially when compared to the 10% optimal choice for PQC H and PQC R.

Discussion
Intuitively, the “flat bottom” of PQC K (rather than the “check mark” shape of PQC H and PQC R) is more consistent
with the estimated impact of the observations since the magnitude of the impacts between 10-th to 60-th percentile is really
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Figure 1. Performance of 6-step PQC with all 5 methods in terms of (a) analysis RMSE and (b) 30-step forecast RMSE as a
function of rejection percentage.

small compared to that of those below 10-th percentile. And hence it should be insensitive (“flat bottom”) to rejecting those
observations between 10-th to 60-th percentile. This explains why the results are better for PQC K than for PQC H since
PQC K is more consistent with the nature of the computation of EFSO and the estimated impact. Note that EFSO provides the
estimated impacts of each observation in the presence of all other assimilated observations, and hence the impacts remain valid
as long as KKK does not change much. However, PQC H and PQC R significantly change KKK when rejecting some observations,
thereby the accuracy of the estimated EFSO impacts becomes lower, and the PQC based on those impacts does not work as
desired. The total AIs obtained at the end of the update consists of the AIs contributed from each individual observation and it
is the AIs that determines the forecast error changes rather than the observation innovation. Hence, PQC should target the AIs
corresponding to the detrimental observations rather than the observations themselves. And simple data denial by manipulating
HHH and RRR does not necessarily reject the AIs that lead to forecast degradation especially when rejecting an excessive number of
observations. PQC K, by contrast, uses the exact same KKK to reject the exact detrimental AIs identified by EFSO and ends up
with even larger improvements. In addition, the observations with largest impacts contribute to AIs among the most unstable
modes, while the less impactful observations are associated with the neutral and stable modes which have little or no error
growth. Hence, after rejecting the few very detrimental AIs, it does not matter much whether those less impactful AIs are
rejected since the difference is very unlikely to grow in the future, thereby showing the “flat bottom” feature in the center of Fig.
1.

For PQC BmO and PQC AmO, they change KKK in a less radical fashion by “assimilating” new observations to the original
analysis and yield improvements similar to PQC K with a small number of rejected observations. But they suffer from
filter divergence easily with a large number of rejected observations since the ensemble becomes overly confident due to the
“additional” assimilation of opposite innovations. It is worth noting that the commonly observed difference in the impact
estimated by EFSO and observing system experiments/ data denial experiments corresponds to the difference in PQC K and
PQC H.
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1. Introduction

During the last decade, an ever growing number
of numerical sensibility studies suggested that atmo-
spheric variability is strongly influenced by the land-
atmosphere coupling, in particular due to soil mois-
ture anomalies. Indeed, soil moisture impacts the at-
mosphere by controlling the evaporation component
in the surface water and energy balance equations.
Through variations in the evaporation, soil moisture
also affects the sensible (H) and latent heat fluxes
(E). Therefore, soil moisture is capable of producing
changes in the atmospheric temperature and humidity
and can also impact precipitation (Seneviratne et al.
2010). On the one hand, there is a control in the
amount of evaporation and consequently, water avail-
ability in the atmosphere for precipitation.

Soil moisture also impacts the Planetary Boundary
Layer (PBL) through H and E, changing temperature
and humidity and affecting its vertical development.
This is crucial for convective triggering (Gentine et al.
2013), especially over Amazon Basin, where precipi-
tation has a diurnal cycle marked by the occurrence
of precipitation peaks hours after the maximum solar
radiation. Bechtold et al. (2004) and Santos e Silva
et al. (2012) using numerical simulations showed that
the improvement in the representation of the diurnal
cycle of precipitation over tropical region of South
America is related with better representation of con-
vective trigger when the convective parameterization
is coupled to H and E.

By the importance of soil moisture for numerical
weather and climate prediction, especially for the
precipitation forecasts, we have applied a soil mois-
ture data assimilation technique developed by (Mah-
fouf 1991) to better represent the soil moisture states
in the initial conditions of the Brazilian global At-
mospheric circulation Model (BAM) of the Cen-
ter for Weather Forecasting and Climate Studies of
the Brazilian National Institute for Space Research
(CPTEC/INPE). In the next section we present a
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ter for Weather Forecasting and Climate Studies, Rodovia
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short description of the data assimilation technique
and a general description of the numerical experiment
performed.

2. Methodology and experimental design

a. Surface analyses

In the method proposed by Mahfouf (1991),
near surface meteorological observations measured
routinely and transmitted throughout the Global
Telecommunication System (GTS) can be used to es-
timate soil moisture. In this method, an independent
two–dimensional statistical interpolation is performed
to analyze 2–m temperature and relative humidity.
The analysis increment for these two variables are
used to analyze the water content of all soil layers
of BAM land surface model. Each soil layer is ana-
lyzed separately; however, in the following equations
subscripts indicating the soil layer are omitted:

δθ = α× (Ta −Tb) +β× (rHa − rHb), (1)

where Ta and Tb are the analyzed and background
2–m temperature and rHa and rHb are the analyzed
and background 2–m relative humidity. The analysis
relies essentially on the coefficients and, also known
as optimum coefficients, which are computed follow-
ing Douville et al. (2000).

b. Numerical experiment

Two long–range runs of 17 years were performed
to verify if better representation of the soil moisture
states in the initial conditions of the BAM can im-
prove the precipitation simulations. Both simulations
were initialized from the same atmospheric initial con-
ditions and forced by the same Sea Surface Tempera-
ture (SST). The first experiment is a Open Loop (OL)
in which the soil moisture evolves freely. Another ex-
periment considers the method proposed by Mahfouf
(1991) (Land Data Assimilation [LDAS]), with a data
assimilation cycle of 6 hours with soil moisture correc-
tion by increments of atmospheric 2–m temperature
and humidity.



3. Results

Differences between the simulations with and with-
out soil moisture data assimilation indicate that in
general, occurs a constant addition of water in the
soil, suggesting the presence of systematic errors in
the model, especially in North and South American
continents (figure not shown). These errors can be
associated with simplifications and deficiencies in the
land surface model instead random errors from the at-
mospheric forcing. Nevertheless, consecutive changes
in the soil water content (positive or negative incre-
ment of soil moisture) impact horizontal distribution
of soil moisture and consequently E and H fluxes.

The cumulative effect of the changes improves the
amount of soil moisture in some regions leading to
an improvement in the forecast of the variables in
lower troposphere, mainly the relative humidity (not
shown). These modifications contributed to a better
representation of the mean annual precipitation cycle
over different regions of the world. In the Figure 1 it
is presented the global mean annual cycle of precipi-
tation. The correlation between each experiment and
Climate Prediction Center – Merged Analysis of Pre-
cipitation (Xie and Arkin 1997, CMAP) data is 0.4 in
OL and 0.8 in LDAS experiment. Major improvement
has occurred from July to October.

Fig. 1. Global mean annual cycle of precipitation
(mm/day). Green line represents the OL experiment, red line
the soil moisture data assimilation run and blue line represents
CMAP observational data.

Figure 2 shows the annual mean difference between
monthly total precipitation from LDAS and OL ex-
periments. Improvements are noticed over North and
South American continents, in particular over Ama-
zon Basin and Southern South America.

The regions of higher improvements are similar to
spatial patterns showed by Global Land–Atmosphere
Coupling Experiment (Koster et al. 2006, GLACE)
reinforcing the coupling strength over these regions.

4. Concluding remarks

The use of soil moisture data assimilation con-
tributed to a better representation of the mean an-
nual cycle of precipitation over different regions of

Fig. 2. Annual mean of the difference between monthly total
precipitation produced by the LDAS and OL experiments.

the world, like North and South American continents,
Africa and Northern Europe. Differences between to-
tal precipitation showed some improvement of pre-
cipitation over regions similar to the spatial patterns
showed by GLACE, reinforcing the coupling strength
of soil moisture and precipitation over some regions
of world.

Due to improvement in the annual cycle of precipi-
tation in this long–range run, the present study shows
a potential benefits in the use of a soil moisture data
assimilation to improve BAM for seasonal forecasting
applications. Such investigation will be explored in
future studies.
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Abstract

Data in atmospheric sounding channels of the microwave radiometer MTVZA-GY on board the Rus-
sian satellite Meteor-M N2 are examined. An adaptive correction technique for MTVZA-GY antenna
temperatures is motivated and developed. The technique accounts for the solar angles and sequentially
assimilates observed minus simulated radiances in a perpetual 24h cycle in order to estimate up-to-date
correction coefficients defined to be functions of the zenith and azimuth solar angles. The accuracy of
corrected MTVZA-GY observations is compared with the accuracy of AMSU-A and MHS data.

Description

MTVZA-GY is a 29-channel microwave imaging/sounding radiometer (with conical scan geometry) some-
what similar to SSMIS or AMSU-A and MHS combined. MTVZA-GY data are available to direct readout
users. Importantly, MTVZA-GY is supported by the radiative transfer model RTTOV starting from its
version 11. For more, see Gayfulin et al. (2018) and the WMO OSCAR web site.

The MTVZA-GY radiometer on board Meteor-M N2 is, unfortunately, currently not working properly
(since 15 August 2017). The next MTVZA-GY instrument is planned to be launched by the end of 2018.
In total, 4–5 satellites of the Meteor-M type with the MTVZA-GY sensor on board are to be launched
till 2025 in both the morning and the afternoon orbits.

Motivation

1. Soon after launch large biases in antenna temperatures were found. These were mitigated by a the
simple linear scheme, which can be viewed as a kind of recalibration: Tb = aTa + b, where Ta is the
antenna temperature, Tb is the recalibrated brightness temperature, and a and b are the regression
coefficients (estimated from a training sample).

Recalibrated and bias-corrected MTVZA-GY data were assimilated by Gayfulin et al. (2017) in
the meteorological data assimilation system of the HydroMetCentre of Russia. A significantly
positive impact of MTVZA-GY observations in the Southern Hemisphere in the absence of AMSU-
A observations was found. However, it was felt that further improvements in the data accuracy
were possible.

2. It was found that after the “simple correction” Tb = aTa + b, observation errors (evaluated against
the background defined to be the 6h NCEP GFS forecast converted to radiances by the RTTOV
model) were dependent on the solar angles (the zenith angle ζ and the azimuth angle α), see Fig.1
(upper panels). This led us to devise a correction scheme that exploits the solar angles dependencies
in order to improve the data.

Solar-angles dependent correction (SAC) technique

To account for the dependence of the observation error on the solar angles, we let the two coefficients, a
and b, of the above “simple correction” scheme be functions of the solar angles α and ζ:

Tb = a(α, ζ) · Ta + b(α, ζ). (1)

The gridded fields a(α, ζ) and b(α, ζ) required for the application of the correction model Eq.(1) are
cyclically updated (i.e. sequentially estimated) every 24 hours in a variational scheme, which aims to
minimize the cost function

J(a,b) = Jobs(a,b) + Jfg(a,b) + Jsmo(a,b)→ min, (2)

where a and b are the vectors that represent the coefficient fields a(α, ζ) and b(α, ζ), Jobs penalizes
deviations of observations (Ta) from the background, Jfg regularizes the problem and allows assimilation

1Correspondence to michael.tsyrulnikov@gmail.com
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Figure 1: Local biases for observations in channel 18 valid at times from 21h UTC, 12 June 2017 to 3h
UTC, 14 June 2017 (descending orbits). Top: After the “simple” correction (with constant coefficients a
and b). Bottom: After SAC. Left: On the α–ζ plane. Right: On the geographic map

of past data by controlling deviations from a first guess (persistence forecast of a and b from the previous
cycle), and Jsmo further regularizes the problem by imposing a smoothness constraint on the fields a and
b. See Gayfulin et al. (2018) for more details.

Evaluation results

Three two-week periods in summer, winter, and spring/fall were selected for numerical experiments. The
application of the estimated SAC correction model to independent observations was shown to significantly
improve their accuracy (as compared to the above “simple correction”, in which a and b are constants).
The MTVZA-GY errors were compared with errors in the respective/similar channels of AMSU-A and
MHS sensors for the same time periods. As compared with AMSU-A observations, corrected MTVZA-GY
data in temperature sounding channels appeared to be 1–3 times less accurate. In atmospheric humidity
sounding channels, the corrected MTVZA-GY observations are about 1.5–2 times less precise than the
MHS data.

Local biases for SAC-corrected observations are presented in Fig.1 (lower panels). In this figure,
comparing the lower panels (the SAC scheme) with the upper panels (the “simple” scheme) demonstrates
how successfully the developed SAC scheme removes the local biases, leaving behind, largely, just noise.

Bibliography

D. Gayfulin, M. Tsyrulnikov, A. Uspensky, E. Kramchaninova, S. Uspensky, P. Svirenko, and M. Gor-
bunov. The usage of MTVZA-GYa satellite microwave radiometer observations in the data assimilation
system of the Hydrometcenter of Russia. Russian Meteorology and Hydrology, 42(9):564–573, 2017. doi:
10.3103/S1068373917090035.

D. Gayfulin, M. Tsyrulnikov, and A. Uspensky. Assessment and adaptive correction of observations in
atmospheric sounding channels of the satellite microwave radiometer MTVZA-GY. Pure and Applied
Geophysics, v. 175, 2018. doi: 10.1007/s00024-018-1917-7. View-only link to the published article:
https://rdcu.be/YLSw.

2



About inertia of measurement devices 
Vladimir A. Gordin. 

National Research University Higher School of Economics & 

Hydrometeorological Center of Russia, Moscow, Russia. vagordin@mail.ru 

A usual model for measuring device readings is based on the following differential 

relation: 

( ) , , , 0.
b

td u k u f u f k b const k= − − − =   (1) 

Here u(t) is the measuring device reading, and f(t) is the true value of the measured 

parameter, t is the time, and k is the parameter characterizing the device inertia. The 

simplest version is: b=0. 

We obtain some data  
1
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 as a result of aerological measurements at time 
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=
, and use a finite-difference scheme to approximate (1) and evaluate the 

true signal f(t). A compact difference scheme (see e.g. [1]) provides high approximation 

order and can help us to avoid a significant amplification of high frequencies in the 

evaluation of f(t). 

The inertia parameter k is not constant and depends, e.g. on temperature, see [2]. 

We can evaluate it (e.g. for a humidity-measuring device) in laboratory experiments under 

constant temperature: lim ( ) ( ).
t

k t K T
→

=  

However, the inertia of a real device cannot change immediately with a change of 

temperature T=T(t). It can be essential when variations of temperature T with height are 

strong (e.g. when the device is located on a radiosonde). 

In this case we should modify model (1) and use the system 

( )

 

1

( )

0

( ) f u k ( ) ,

( ( )) ( ) ( (0)) ( (s))e

t t

t

A s t

t

d u k t u f t d u

d k A K T t k k t K T K T ds

−

−

  

= −  −  = + 

=  −  = + 
, 

where A is a constant. Compact finite-difference scheme are useful for approximation of 

the differential connections (see e.g. [1]). 

We assume that the temperature T(t) is known. Beforehand we evaluate the constant 

A in additional laboratory experiments. 

We recommend to use the algorithm for BUFR data assimilation. 

The article was prepared within the framework of the Academic Fund Program at 

the National Research University Higher School of Economics (HSE) in 2018 - 2019 (grant 

№ 18-05-0011) and supported within the framework of a subsidy granted to the HSE by 
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The ensemble forecast sensitivity to observations (EFSO) formulation (Kalnay et al. 2012) has 
been implemented (Ota et al. 2013 and Groff et al. 2017) in the source code that provides 
ensemble square root filter (EnSRF) (Whitaker and Hamill 2002) functionality at the National 
Centers for Environmental Prediction (NCEP).  As with the adjoint-based forecast sensitivity 
observation impact (FSOI) approach, the ensemble-based observation impact approach 
effectively enables a simultaneous computation of estimated forecast impacts and sensitivities 
for any and all observations assimilated in a numerical weather prediction (NWP) system.  The 
NCEP GFS applies 4D ensemble-variational (4DEnVar) data assimilation (Kleist et al. 2015), 
and as such, requires an ensemble of short range forecasts to provide flow-dependent background 
uncertainty information.  As currently configured, the EnSRF data assimilation algorithm is 
applied to assist in the assignment of initial conditions for the aforementioned ensemble of short 
range forecasts.  In the context of 4DEnVar GFS cycling and following the EFSO approach 
described in Kalnay et al. 2012, the ensemble of analyses resulting from the EnSRF update have 
been used in representation of analysis-error covariance, and accordingly in approximation of the 
EnSRF Kalman gain.  EFSO calculations are then based on the projection of this approximate 
Kalman gain to an evaluation forecast time using the gfs forecast model.                                       

A complication with applying EFSO in the aforementioned context is that the set of observations 
and observation types assimilated in the GFS applied configuration of EnSRF are not 
representative of what is assimilated during the variational minimization (Todling and Diniz 
2018).  A variance-reduction based approach to discarding observations during the EnSRF 
update accounts for most of this discrepancy.  To alleviate this impediment to achieving 
representative EFSO datasets for the aforementioned context, beta testing has been performed for 
GFS applied EnSRF configurations in which the variance-reduction based data discarding is 
disabled.  Moving forward, modified pure ensemble sensitivity-based approaches will be 
explored to achieve a more robust observation impact approach.                                                                                                           

In the EFSO approach, cross-covariances between perturbations in observation space and 
perturbations for a choice of metric in state space at the evaluation forecast time are employed to 
enable comparison of background states and individual observations at the evaluation forecast 
time.  As such, taking advantage of the simultaneity aspect of EFSO datasets enables an 
objective basis for identifying where and when assimilated observation types are relatively more 
(less) efficient in reducing forecast error.  Figures 1 and 2, see captions, show partitioning of 24 
hour EFSO datasets (i.e. estimates for reduction of 24 hour forecast error) for the moist total 



energy norm (Ehrendorfer et al. 1999) by location and innovation.  Similarly, EFSO simultaneity 
can be applied as a basis for hyperspectral IR channel selection.  24 hour EFSO calculations for 
IASI, AIRS and CrIS (not shown) indicate that assimilated 11 µm surface channels and 9.6 µm 
ozone band channels are relatively inefficient in reducing forecast error for the moist total energy 
norm. 

Although the EFSO methodology provides an objective basis for estimating observation forecast 
impacts, the extent to which the approach provides representative information for improving 
global forecast system (GFS) or global ensemble forecast system (GEFS) forecast skill has yet to 
be rigorously tested.  As such, it is planned that several EFSO guided experiments will be 
performed in the next year.   
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Figure 1.  7.5⁰ by 7.5⁰ Composite mean of 24 hour EFSO for the moist total energy norm, AMSU-A channel 2 
(left panel) and  AMSU-A channel 6 (right panel), the plots are for a several day sample from December 2014. 

 

  
Figure 2. Total per cycle 24 hour EFSO for the moist total energy norm versus innovation bin, GPS RO 
Observations located below 700 hPa (left panel) and GPS RO observations located above 300 hPa (right 
panel), the plots are for a several day sample from January 2015. 
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Introduction 

Global Navigation Satellite System (GNSS) Radio Occultation (RO) has proven to be a very important 
element in the global data observing system, as the measurement is an important source of atmospheric profile 
information for assimilation into the NWP system. The Japan Meteorological Agency (JMA) has assimilated 
bending angle data into its global NWP systems by introducing the Radio Occultation Processing Package 
(ROPP) (Culverwell et al. 2015). This paper reports on recent updates in the usage of GNSS RO data. 
 
Updates 

The relevant revisions have been evaluated and tested in the pre-processing of RO data for incorporation 
into the operational global assimilation system. The major updates are as follows: 
 New bending angle threshold in gross error checking for the tropics 
 New handling of RO quality flags (16-bit in BUFR) 
 Setting of the lower altitude limit in data selection 
 ROPP update from version 6 to version 8 

Gross error checking is part of quality control performed before analysis based on the departure of 
observation and the first guess (known as the FG departure). Observations for which the absolute value of the 
FG departure exceeds the relevant threshold are rejected. The previous threshold was 1.5 times the 
observation error globally. This was stringent for the tropics because the number of bending angle 
observations passed through the gross error checking in the tropics was smaller than those for other areas due 
to the relatively large errors of tropic first guesses. The current threshold value is three times the observation 
error for the tropics. 

Quality flagging involves 16 items of quality information added by the data processing center of each 
satellite. Before this update, only one item showing the quality of bending angle processing was referenced in 
quality control. In this update, profile quality was added as extra information to support quality control via 
quality flags. 

In previous operation, there was no lower limit of altitude for usage. However, Metop observations 
exhibited a bias at altitudes below 8 km (von Engeln et al. 2009). The bias of other satellites was less severe, 
but was observed below 2 km. Accordingly, the lower limit of altitude for usage was set as 8 km for Metop 
and 2 km for other satellites. 

The ROPP processing program developed by ROM SAF (the Radio Occultation Meteorology Satellite 
Application Facility) includes the source code for RO data assimilation. ROPP version 6 was introduced when 
we started to assimilate bending angle instead of refractivity in March 2014. As the new source code for 



assimilation of bending angle data was added in ROPP version 8, we updated to the version 8. 
 
Impacts on analysis 

Observation system experiments for the new assimilation configuration were performed for August 2015 
and January 2016. The control experiment had the same configuration as the previous operational global 
system, and the test experiment included the above-mentioned updates. Among the four changes, the most 
significant was that implemented for the bending angle threshold in gross error checking for the tropics. 
Figure 1 shows normalized changes in the standard deviation of the FG departure of radiosonde observation. 
As the reduced bending angle threshold in gross error checking increased the number of RO observations used 
for the tropics, the first guess profiles of radiosonde temperature were improved in the area. As a result, the 
first guess profiles of zonal wind were also improved. 
 
Summary and future tasks 

The usage of RO data in operational global analysis was updated on July 25 2017. After the update, the 
number of observation data used was increased for the upper troposphere and the stratosphere, and improved 
analysis of temperature and wind were confirmed there. 

The above updates included the setting of a lower altitude limit below which the usage of observation data 
is halted. However, a November 2016 EUMETSAT update of RO data processing for Metop improved the 
quality of the Metop bending angle below the lower limit. In future work, data usage should be updated via 
careful monitoring of changes in data quality. 
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Figure 1: Normalized changes in the standard deviation of first-guess departures from 

radiosonde temperature (left) and zonal wind (right) in the tropics based on the experiments of 
August 2015 (red) and January 2016 (green). Negative values represent improvement. The 
horizontal axis indicates normalized standard deviation differences, error bars represent a 
95% confidence interval, and dots represent statistical significance. 

(%) (%) 



Data assimilation experiments of SSR mode-s downlink data  
using Meso-NAPEX system of JMA 

  
Hiromu Seko1, Ko Koizumi1, Takayuki Yoshihara2, Atsushi Senoguchi2  

and Tadashi Koga2 
  

1Meteorological Research Institute, Tsukuba, Ibaraki, Japan 
2Electronic Navigation Research Institute, Chofu, Tokyo, Japan 

1Corresponding author: hseko@mri-jma.go.jp 

 
1. Introduction 

The new air control radar system provides SSR 
mode-s downlink data very frequently. The 
horizontal wind and temperature at the positions 
of airplanes can be obtained from SSR mode-s 
downlink data that include the heading directions 
of airplanes, the speeds against the ground and 
against the airflow, the magnetic headings, and 
Mach numbers. Because the temporal and spatial 
intervals of downlink data are very short, the 
downlink data are expected to be useful for data 
assimilation of numerical weather prediction. 

The data assimilation experiments on the 
horizontal winds of downlink data were performed 
by using LETKF (Local Ensemble Transform 
Kalman Filter; Hunt et al 2007, Miyoshi and 
Aranami, 2006), and showed that the rainfall 
forecast was improved by the assimilation of 
downlink data (Seko et al 2016). As the next step 
of this study, the quality of downlink data were 
investigated by the comparison with the 
operational mesoscale analysis data of Japan 
Meteorological Agency (JMA), and the data 
assimilation experiments of downlink data were 
conducted with the meso-NAPEX system (a part of 
JMA’s 4-dimensional data assimilation system), 
which had been implemented to Meteorological 
Research Institute (MRI).  
 
2. SSR mode-s downlink data 

The downlink data observed by air control radar 
of the Electronic Navigation Research Institute 
was used in this study. It covers the Eastern and 
Central Japan, and its temporal interval is 10 
seconds. 

The horizontal wind and temperature were 
converted from the downlink data according to 
Shigetomi et al (2013). Figure 1 shows the vertical 
profiles of bias and RMSE between the downlink 
data and mesoscale analysis. The period of 
comparison is 30 days of September, 2015. Before 
the comparison, the pressures at the positions of 

downlink data were obtained from their heights, 
because the pressures of downlink data were 
converted to their heights using the ICAO 
standard profile of atmosphere before sending to 
the radar.  

The comparison shows that the temperature of 
downlink data are lower than that of mesoscale 
analysis data by 1 degree, and that the large 
difference is seen below the height of 3 km. As for 
the horizontal wind, there is the large difference 
when the airplanes were turning or ascending and 
descending with large speed. Then, the horizontal 
winds in these conditions were removed before the 
comparison. The bias of horizontal wind is 
relatively small. Considering this result, the 
temperature above the height of 3 km was used in 
the assimilation after removing the bias. The 
horizontal wind of whole layers were assimilated 
without subtracting the bias. 
 
3. Outline of data assimilation experiments     

In this study, the Meso-NAPEX system, which 
includes JNoVA (JMA Non-hydrostatic Model 
based Variational Data Assimilation System; 
Honda, 2008), was used. Its grid intervals of 
forecast and assimilation are 5 km and 15 km 
respectively, and its domain is the same as the 
operational mesoscale analysis.  
 The case event to which the Meso-NAPEX was 
applied is the intense rainfall that passed the 
Kanto Plain. Because the intense rainfall region 
and shear-lines passed the Haneda and Narita 
International airports, the flight operations were 
affected by this rainfall event. The rainfall and 
shear-lines were reproduced by the predictions 
from the initial conditions that were obtained by 
using the operational data only and by adding the 
downlink data to operational data. The impact of 
downlink data were indicated by the comparison 
with the observed ones. 
 
4. Results of data assimilation experiments 



  Figure 2 shows the positions of downlink data. 
Many downlinks were distributed around the 
Haneda and Narita International airports. The 
results of assimilation were shown in Fig. 3. The 
intense rainfall was reproduced by assimilation of 
the operational data only (Fig. 3, left). However, 
the rainfall region was smaller and the rainfall was 
generated on the western side of the observed one. 
When the downlink data were assimilated, the 
position of rainfall region became more similar to 
the observed one, though the rainfall was too 
intense (Fig. 3, center). The positions of shear-lines 
were improved by the assimilation of downlink 
data, too. Next, the differences in the initial fields 
between these two experiments were investigated. 
The easterly flow from the eastern side of Kanto 
Plain became more intense when the downlink was 
assimilated. This result indicates that the SSR 
mode-s downlink data have a potential to improve 
forecasts of rainfalls and shear-lines, even though 
that the horizontal grid interval and slot interval 
of the assimilation are as long as 15 km and 1 hour, 
respectively. 

 
Reference: 
Miyoshi, T. and K. Aranami, 2006: Applying a four-

dimensional local ensemble transform Kalman filter 
(4D-LETKF) to the JMA nonhydrostatic model 
(NHM). SOLA, 2, 128-131. 

Hunt, B. R., E. J. Kostelich and I. Szunyogh, 2007: 
Efficient data assimilation for spatiotemporal chaos: 
A local ensemble transform Kalman filter. Physica D, 
230, 112-126. 

Honda, Y. and K. Sawada, 2008: A new 4D-Var for 
mesoscale analysis at the Japan Meteorological 
Agency. CAS/JSC WGNE Res. Act. Atmos. Ocea. 
Model., 38,.01.7-01.8. 

Seko, H., T. Yoshihara, and A. Senoguchi, 2016: Data 
assimilation experiment of SSR mode-s downlink 
data. CAS/JSC WGNE Res. Act. Atmos. Ocea. Model.. 
46, 1.29-1.30  

Shigetomi et al., The evaluations and analyses of 
weather forecasts by using the SSR mode-s downlink 
data. The preprints of 51st airplane symposiums, 
JSASS-2013-5158 (in Japanese). 

 

 
  
 

 

 

Fig.1：Comparison between the downlink data and mesoscale analysis of JMA. 
Vertical profiles of the bias and RMSE of temperature, and horizontal 
wind. 

Fig.2 Positions of the assimilated 
downlink data. Colors indicate 
the height of data. 

Fig. 3:  Rainfall distributions predicted from the initial fields that were produced by assimilation (left) 
without downlink data and (center) with downlink data. (right) Observed rainfall distribution. Broken line, 
red and blue arrows indicate the shear-line and airflows around the rainfall region, respectively.  
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1. Introduction 
The Japan Meteorological Agency (JMA) 

utilizes atmospheric motion vectors (AMVs) and 
clear-sky radiance (CSR) data derived from 
Meteosats (the operational geostationary satellites 
of the European Organization for the Exploitation 
of Meteorological Satellites: EUMETSAT) to 
produce analysis fields in the global data 
assimilation (DA) system. On March 6th 2018, 
EUMETSAT operational satellite observing over 
longitude 0 deg. was switched from Meteosat-10 to 
Meteosat-11. Against such a background, JMA 
examined the data quality of AMV and CSR data 
from both satellites and the impacts of related 
data assimilation on the accuracy of numerical 
weather prediction (NWP). 

2. Assimilation experiments 

Meteosat-10 AMV data from three channels of 
visible (VIS, 0.635 um), infrared (IR, 10.8 um) and 
water vapor (WV, 6.25 um) channels and CSR 
from the WV channel are used in JMA’s global DA 
system. To compare the impacts of Meteosat-11 
and Meteosat-10 data assimilation on the 
accuracy of NWP, experiments were conducted 
with 1) no AMVs and CSR from Meteosat-10 and 
-11 (BASE), 2) Meteosat-10 AMVs and CSR 
(CNTL), and 3) Meteosat-11 AMVs and CSR 
(TEST). The common quality control methods used 
with CNTL were applied for the TEST experiment. 
The experiment period was from February 7th to 
26th 2018 (20 days). 

3. Data quality and data assimilation 
impacts on the NWP system 

 Meteosat-11 AMVs 

Figure 1 shows histograms of the first-guess 
(FG) departure for the zonal wind component of 
AMVs. The standard deviation (STD) of the 
zonal (U) and meridional (V) wind components 
in the upper level (100 – 400 hPa) from 
Meteosat-11 were approximately 0.1 – 0.5 m/s 
for all latitude areas. These values were larger 
than those of Meteosat-10. Figure 2 shows 
histograms of FG departure (U and V 
components) for VIS channel lower winds. 
Higher STDs were observed for Meteosat-11 
AMVs. However, as Meteosat-10 AMVs were 

operationally used in the NWP system and 
quality indication (QI) with forecasts resulted in 
favorable judgement for Meteosat-10 winds, 
leading to superior statistics in terms of FG 
departure comparison, the qualities of the two 
wind values were actually comparable. 

An advantage of Meteosat-11 AMVs was 
observed in the data counts. Those for IR/WV 
AMVs of Meteosat-11 were larger than those for 
Meteosat-10, particularly for WV AMVs (Fig. 3). 
The improved tracking success rate of the 
cloud/water vapor pattern in satellite imagery 
contributes to this increase. As there was no 
marked difference in the histograms of FG 
departure statistics among other Meteosat-11 
AMVs and those of Meteosat-10, the data count 
increase was considered to stem from the higher 
image quality of Meteosat-11 over that of 
Meteosat-10. 

Figure 4 shows changes in the STD of FG 
departure for other wind observations 
(radiosonde and aircraft). These changes exhibit 
no particular deterioration, and indeed minor 
improvement is observed. Thus, no particular 
issues were found with the use of Meteosat-11 
AMVs for data assimilation. 

 

 
Figure 1. First-guess departure histograms of U (left) and V 

components (right) for IR upper-level (100 – 400 hPa) AMVs 
from Meteosat-11 (top) and -10 (bottom). Solid lines show 
normal distribution. 
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Figure 2. As per Figure 1, but for lower-level (700 – 1,000 

hPa) AMVs 
 

 
Figure 3. Time sequence plots for data counts of 

Meteosat-10 (yellow) and -11 (blue) active WV AMVs over the 
tropics 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Changes in standard deviation of analysis fields 
and first guesses for wind observation (radiosonde and aircraft) 

 Meteosat-11 CSR 

The mean bias of the FG departure for 
Meteosat-11 CSR was approximately 0.16 K, and 
that of Meteosat-10 was -0.24 K. After variational 
bias correction (Ishibashi 2009), the difference in 
these biases was less than 0.01 K. The STD of FG 
departures and the data counts were very similar. 

Figure 5 shows differences in the FG 
departure’s STD for microwave humidity sounder 
data between CNTL and BASE (left) and those 
between TEST and BASE (right). Certain 
decreases (plotted in blue) of STD indicating 
improved WV fields were observed over the 
Meteosat observation area in both cases, 
indicating similar positive impacts on WV field 

analysis for Meteosat-10 and -11. Consistent 
improvement in both sets of data was also 
observed with other microwave instruments (e.g., 
ATMS, SAPHIR and microwave imagers) as 
shown in Figure 6. 

 

 
Figure 5. Differences in the first-guess departure standard 

deviation (STD) of microwave humidity sounding (MHS) data 
between CNTL and BASE (left) and between TEST and BASE 
(right). Blue indicates decreases (i.e., improvement) in the STD 
of CNTL or TEST over BASE. 

 

 
 
Figure 6. Normalized changes in the standard deviation of 

first-guess departures for (a) microwave sounding data, (b) 
ATMS, (c) SAPHIR and (d) microwave imager data with 
assimilation of Meteosat-10 (green) and Meteosat-11 (red) 
CSRs 

4. Summary 

The data qualities of AMVs and CSR from 
Meteosat-11 were equivalent to those of 
Meteosat-10, and their data assimilation 
impacts in NWP were similar. Based on these 
findings, Meteosat-11 AMV and CSR data were 
incorporated into JMA’s operational global NWP 
system on March 6th 2018. 
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An Algorithm for the Use of Tropical Cyclone GPS Dropsondes
within Operational Numerical Weather Prediction Systems

Henry R. Winterbottom1, Jason Sippel2, Avichal Mehra3, and Vijay Tallapragada3

1 Introduction

Global positioning system (GPS) dropsondes, which are deployed during North Atlantic and Eastern Pacific
ocean basins during tropical cyclone (TC) aircraft reconnaissance missions, are transmitted to the National
Centers for Environmental Prediction (NCEP) and encoded using the TEMP-DROP format [1]. Currently, and
for data assimilation purposes, the observation locations are specified as the GPS dropsonde launch position for
all thermodynamic and kinematic variables. Although at large radii, relative to the TC center of circulation (i.e.,
the environment) this practice may only lead to small errors in observation positions, the errors may become
very large as the circulation of the TC is encountered. For this reason NCEP rejects all wind observations
within the TC vortex. In this study, we evaluate the implications upon TC track forecasts when the trajectory
of the GPS dropsondes is estimated and assimilated.

2 Methodology

The reconnaissance aircraft missions considered in this study are both piloted (e.g., the NOAA P3 and the
United States Air Force C-130) and unmanned (i.e., the NASA/NOAA Global Hawk). The GPS dropsondes
are launched via a chute installed on the respective aircraft and a parachute is immediately deployed as the
dropsonde falls. The collected observations for height, temperature, dew point-depression, wind speed, and wind
direction are recorded at standard isobaric levels and encoded using the TEMP-DROP format. Also encoded
are the time and location of the first wind observation (e.g., launch) and time and location of the last wind
observation (e.g., surface impact).

Figure 1: (left) The column integrated HRD radar winds (shaded) and wind vectors (gray arrows) valid 08 September
for TC Irma (2017). The dropsonde release locations (red) and subsequent advection trajectories (black), temporally
concurrent with the respective the NOAA 42 mission commencing 1710 UTC 08 September and ending 0123 UTC 09
September, are super-imposed. (right) (a) The distance and (b) temporal error error for 1147 dropsonde TEMP-DROP
message encodings that contain a SPL (e.g., dropsonde impact location) message as a function of the distance from the
TC center of circulation. The mean, the 95% confidence intervals, and the respective interval sample size are denoted
by the black circles, error bars, and red text, respectively.

The respective TEMP-DROP observation messages are decoded into NOAA/AOML HSA formatted files
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Prediction (NCEP)/Environmental Modeling Center (EMC); Email: Henry.Winterbottom@noaa.gov
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3NOAA/National Weather Service (NWS)/NCEP/EMC
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[2]. Using the launch time and location, theoretical fall-speed for the GPS dropsonde, and observed vector wind
components, the advected position for the GPS dropsonde is deduced. Figure 1 illustrates the GPS dropsonde
launch and predicted positions super-imposed upon the HRD composite wind analysis valid for TC Irma (2017)
on 08 September. The absolute distance and time errors, as determined by computing the difference between
the estimated dropsonde trajectory and surface impact information within the TEMP-DROP encoded message
for all drops in Figure 1 (left), are 0.932-km and 45.4 seconds, respectively. Also provided is an analysis of the
spatial and temporal errors, as a function of radial distance from the respective TC, for all GPS dropsondes
containing a splash location message and collected within North Atlantic ocean basin TCs during the period
2015 - 2017.

3 Forecast Experiments

In this section, we compare results for NWP forecast experiments without GPS dropsonde drift assimilation
(CNTRL) to experiments without estimation of drift or assimilation of inner-core winds (CTRL) to experiments
where the drift is estimated and all winds are assimilated. The Hurricane Weather Research and Forecasting
(HWRF) model provides the dynamical atmospheric predictions while the NCEP Grid-point Statistical Inter-
polation (GSI) system enables the assimilation of all atmospheric observations.

Figure 2: (left) The TC track forecast error for CNTRL (black) and EXPT (red) compared to observations and (right)
the TC track forecast skill for EXPT (red) compared to CNTRL.

Figure 2 (left) illustrates the TC track forecast error (compared to observations) for EXPT and CNTRL and
(right) the TC track forecast skill for EXPT when compared to the baseline experiment (CNTRL). Overall, the
TC track forecast error is reduced for EXPT, in particular at medium range forecast lead times. This is further
illustrated when assessing the TC track forecast skill at medium range lead-times where the improvement is on
the order of nearly 7%.

4 Ongoing Research and Future Applications

The 2018 NCEP operational HWRF forecasting system will include dropsonde drift assimilation when recon-
naissance observations are available.
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Atmospheric Motion Vector data for typhoons 
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1. Introduction
The Meteorological Satellite Center of the Japan Meteorological Agency (JMA/MSC) has produced 

operational Himawari-8 Atmospheric Motion Vectors (AMVs) since July 7th 2015 (Bessho et al. 2016). 
The data are created using three sequential satellite images with temporal intervals of 10 minutes on an 
hourly basis. To support the provision of wind data relating to meso-scale phenomena and typhoons, 
JMA/MSC started operational generation of rapid-scan AMVs (RS-AMVs) based on Himawari-8 rapid-
scan imagery in July 2017 for JMA’s internal assessment. These RS-AMVs are produced every 2.5 
minutes for a domain covering Japan and an additional small domain covering a typhoon presents over 
the western North Pacific (Fig. 1 (a)). RS-AMVs for typhoons are expected to clarify the fine structure of 
typhoon wind fields better than operational AMVs (Fig. 1). Accordingly, the assimilation of RS-AMV data 
is expected to improve typhoon analysis and forecasting skill. 
2. Quality of RS-AMVs for five typhoons
RS-AMVs retrieved by JMA/MSC for five typhoons (Soudelor, Goni and Dujuan in 2015, and 

Nepartak and Megi in 2016) were used for data quality assessment. The data were validated 
against dropsonde (DOTSTAR; Wu et al. 2005) and sonde observations, and against first-guess 
(FG) wind data from JMA’s global model. Validation was performed for each of the five cases. 
The results showed that RS-AMV wind speeds exhibited a negative bias against sonde 

observations, especially over mid- and lower-levels, and occasionally against the FG (Table 1). 
This may be attributable to the significant difference in the vertical levels of wind speed shear 
between sonde and RS-AMV data (Fig. 2). Root mean square vector differences (RMSVDs) of 
RS-AMVs were larger than those of operational AMVs (RMSVD: 5 – 6 m/s) against sonde 
observations. Comparison of the five cases indicates that wind data for Typhoon Nepartak were 
more accurate than in the other cases (Table 1 and Fig. 2). 
3. Typhoon RS-AMV observing system experiments (OSEs) with JMA's global NWP

system
OSEs were performed for Typhoon Nepartak (for which data quality was the best of the five typhoons 

examined; see Section 2) with JMA’s global NWP system for the period from July 1 to July 20 2016. 
Here, the term CNTL refers to an experiment involving assimilation of Himawari-8 AMVs processed 
using 1) the 100-km super-observation technique (100kmSPOB; Yamashita 2014) for the area over 
Japan and surrounding areas, and 2) 200-km thinning over other regions. TEST refers to an 
experiment involving assimilation of Himawari-8 RS-AMVs for typhoons processed with 100kmSPOB, 
in addition to the AMVs assimilated in CNTL. The Himawari-8 typhoon RS-AMVs were processed 
using 100kmSPOB to promote effective use of data from the area around the typhoon center. A larger 
body of AMV data was assimilated for the area around the typhoon center in TEST than in CNTL (Fig. 
3). The typhoon track forecasts observed the experiments were verified against typhoon best track 
(BST) data provided by the Regional Specialized Meteorological Center (RSMC) Tokyo – Typhoon 
Center. Quality control for the wind data in both experiments was as per that of the operational NWP 
system. The OSE results showed neutral impacts on typhoon track forecasts. The typhoon intensity 
forecasts in TEST were weaker than in CNTL (Fig. 4). However, as shown in Fig. 5, forecast errors 
were reduced along the typhoon track areas at 500-hPa geopotential height.  
More case studies are needed to clarify impacts from assimilation of RS-AMVs for typhoons. 

4. Conclusions
The quality of Himawari-8 RS-AMVs for typhoons in five cases was evaluated using DOTSTAR 

dropsonde observation data and FG wind data from JMA’s global model. The results indicated that 
RS-AMV wind speeds exhibited a negative bias against both data types. Meanwhile, assimilation 
experiments involving RS-AMV data demonstrated partially improved typhoon structures in JMA’s 



global NWP system. Further investigation is needed to elucidate the mechanism behind differences in 
typhoon structure forecasts with RS-AMV data assimilation. 
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Figure 1:  Himawari-8 AMV data coverage (a: RS-
AMVs for a typhoon (approx. 4-km res.); b: 
operational AMVs (approx. 50-km res.) at 12 UTC on 
July 6 2016 for analysis of Typhoon Nepartak (AMVs: 
red: >= 50 kt; blue: >= 30 kt; black: < 30 kt) 

(a) (b)

YYYYMMDDHH
(Typhoon name)

Vs. Forecast ME RMSVD ME RMSVD ME RMSVD ME RMSVD ME RMSVD
HL 0.33 6.69 0.04 6.16 -0.01 6.00 0.29 3.80 -0.46 5.74
ML -2.42 6.83 0.12 6.51 -1.13 4.44 0.27 2.99 -0.23 3.47
LL -1.10 4.83 0.00 3.49 0.38 4.02 -1.14 3.65 -0.18 3.21

Vs. Sonde ME RMSVD ME RMSVD ME RMSVD ME RMSVD ME RMSVD
HL -5.03 11.28 -6.77 10.98 -1.49 6.89 0.63 5.53 -1.82 7.68
ML -4.17 10.14 -8.65 16.12 -2.55 7.11 -0.50 6.03 -4.46 7.86
LL -2.37 7.45 2.72 9.05 -1.36 6.70 0.58 5.01 0.14 6.58
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Figure 2: Wind speed vertical distributions of 
RS-AMVs for typhoons and wind sonde 
observation at 1104 UTC for August 6 2015 
(Soudelor) and July 6 2016 (Nepartak)

Table 1. Results of typhoon RS-AMV validation against sonde winds and wind forecasts in five case 
studies.  Bxx: Himawari-8 band number; ME: mean error of wind speed [m/s];  RMSVD: root mean square 
wind vector difference [m/s]; HL: 10 – 400 [hPa], ML: 400 – 700 [hPa], LL: 700 – 1,000 [hPa].  
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Figure 5: Mean error differences (a) and normalized root 
mean square error differences (b) between TEST and 
CNTL for 12-hour forecast lead times at 500-hPa 
geopotential height. (c) Typhoon Nepartak BST track.

Figure 4: Average track forecast errors for 
Typhoon Nepartak (left) and intensity forecast 
errors (sea level pressure; right). The red line 
shows TEST values, the blue line shows CNTL 
values, and red dots show sample data numbers. 
Error bars represent a 95% confidence interval.
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Figure 3: AMV data coverage after QC 
around Typhoon Nepartak in CNTL (left) 
and TEST (right) for 06 UTC on July 4 
2016 
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