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Development of and advances in ocean, sea-ice, 
and wave modelling and data assimilation. 
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Introduction 

The National Centers for Environmental Prediction (NCEP) of the National Oceanic and 
Atmospheric Administration (NOAA) provides the operational wave forecast for the U.S. National 
Weather Service (NWS). As part of ongoing efforts to improve forecasting, the NCEP’s 
Environmental Modeling Center (EMC) is developing an ensemble-based data assimilation 
system, based on the Local Ensemble Transform Kalman Filter (LETKF) [1], the existing 
operational Global Wave Ensemble System (GWES) [2], and the operationally available satellite 
and in-situ observations. 

Methodology 

The data assimilation system is modular and driven externally by a bash script. A flowchart of the 
system, including its modules and advantages is shown in Figure 1. The LETKF is a computationally 
efficient implementation of the varied Ensemble Kalman Filter methods. It uses an ensemble of 
numerical forecast model runs to estimate the background error covariance and assimilates 
observations when they occur rather than aggregating them at a fixed analysis. In order to apply 
LETKF to the wave field, the LETKF system developed for ocean models [3] was adapted to meet 
the wave field data assimilation requirements; significant wave height (SWH) is assimilated in 
this case. The forward operator for the SWH is an independent module which handles in-situ and 
altimeter observations of SWH from four satellites (Jason-2, Jason-3, CryoSat-2 and Saral/Altika, 
approximately 240k observations per day) and includes a multi-step quality control procedure. 

Figure 1. Upper: Flowchart of the modular LETKF DA system for SWH in the framework of the NWS operational guidance. Lower 
Left: List of the developed modules transferable any wave DA system. Lower Right: List of major advantages of the system. 

The GWES is based on WAVEWATCHIII® [4] and it consists of a 20-member ensemble forced with 
NCEP-GEFS bias corrected wind data, and one control run with NCEP’s deterministic GFS model. 
Each member runs on a spherical grid with 0.5 degree resolution in longitude and latitude, and 



uses the ST4 wave physics. In this report, results from a similar system for the Gulf of Mexico with 
spatial resolution 0.25 degrees are presented.  

Results 

Results from the LETKF-Wave prototype for three consecutive forecast cycles from the April 6, 
2017 are shown in Figure 2. The bias of the analysis has been reduced significantly, at least 100 
percent in most of the cases. The preliminary results show that using SWH analysis fields as 
initial conditions for the next prediction cycle is significant for 12h. 

Figure 2.Upper panel: The predicted field of SWH, the black cycles show the locations for the satellites observations. Lower panel: 
The mean difference of the observed SWH from the background (blue) and the analysis (orange) at the observation locations as 
function of latitude; the error bars show the spreading of the ensemble. The blue dashed line and the black solid line are the mean 
bias of background and analysis accordingly. 

Summary 

The preliminary results from the wave data assimilation suite show great potential for improved 
NWS wave forecasts. This modular approach is compatible with variational and ensemble-based 
approaches and is easily expandable. Currently, the LETKF for SWH is under extensive validation 
and verification at a global scale. 
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This is a study funded by Joint Polar Satellite System (JPSS) - Proving Ground and Risk 

Reduction (PGRR) Program at NOAA’s National Environmental Satellite, Data, and Information Service 

(NESDIS). The main motivation of this study is to demonstrate how various ocean color products can be 

used in a global ocean modeling framework [1], and to investigate effects of different combinations of 

atmospheric forcings (Climate Forecasting System Reanalysis (CFSR) [2];  Reanalysis 2 (RA2) [3]) and 

ocean color products on the upper water thermal structure of the NINO3.4 region (5°N - 5°S and 170°W - 

120°W).  

Two ocean color (OC) products (Sea-Viewing Wide Field-of-View Sensor (SeaWiFS); Visible 

Infrared Imager Radiometer Suite (VIIRS)) and two different optical algorithms for computed short-wave 

radiant fluxes [4][5] are used for computing shortwave radiant fluxes in water, and they were combined 

with two different atmospheric forcings (CFSR and RA2) for creating eleven numerical experiments of a 

global ocean model (Table 1). Effects of different optical parameterizations and frequencies of ocean 

color products along with different forcings on the upper ocean thermal structure are then quantitatively 

compared.  

 
Table 1. Various ocean color products and temporal frequencies used for computing short wave radiant fluxes 

combined with different atmospheric forcings in a global ocean modeling framework (H: hourly data used; D: daily-

averaged data used; SH; simulated hourly data used for shortwave radiant fluxes only; SZA: solar zenith angle). 

Experiments Ocean color product Sensor Forcings OC Period Algorithms  

KparCLM Long-term climatological KdPAR [6] SeaWiFS CFSR (H) 1997-2010 [4] 

ChlaCLM Long-term climatological Chl-a [7] SeaWiFS CFSR (H) 1997-2010 [5] 

ChlaIND Interannual mean Chl-a [7] SeaWiFS CFSR (H) Each year  

(2001 – 2010) 

[5] No diurnal 

SZA in water 

ChlaID Interannual mean Chl-a [7] SeaWiFS CFSR (H) Each year  

(2001 – 2010) 

[5] Diurnal SZA 

in water 

KparSWFclmD Long-term climatological KdPAR [6] SeaWiFS RA2 (D) 1997-2010 [4] 

KparVRSclmD Long-term climatological KdPAR [6] VIIRS RA2 (D) 2012-2015 [4] 

KparVRSclmH Long-term climatological KdPAR [6] VIIRS RA2 (SH) 2012-2015 [4] 

ChlaSWFclmD Long-term climatological Chl-a [7] SeaWiFS RA2 (D) 1997-2010 [5] No diurnal 

SZA in water 

ChlaVRSclmD Long-term climatological Chl-a [7] VIIRS RA2 (D) 2012-2015 [5] No diurnal 

SZA in water 

ChlaVRSclmH Long-term climatological Chl-a [7] VIIRS RA2 (SH) 2012-2015 [5] No diurnal 

SZA in water 

ChlaVRSclmDW Long-term climatological Chl-a [7] VIIRS RA2 (D) 2012-2015 [5] Diurnal SZA 

in water 

 

Hybrid Coordinate Ocean Model (HYCOM; GLBa0.24 hereafter) with cylindrical (78.64°S – 

66°S); recti-linear coordinate (66°S – 47°N); and. Arctic bipolar patch (>47°N) is used. HYCOM has 

vertical coordinates employing 32 layers with following isopycnals in the deep sea, z-levels in the surface 

and terrain-following σ-coordinate near coastal areas [1]. K-Profile Parameterization (KPP) [8] is used as 

a vertical mixing scheme. GLBa0.24 is forced by either hourly atmospheric fluxes from NOAA’s CFSR 

[2] or daily averaged RA2 [3]. Temperature averaged over the upper 100m at the NINO3.4 region is 

selected to quantify the impact of each numerical runs, and Global Ocean Data Assimilation System 

(GODAS) [9] is used for verification purposes. 

mailto:Hae-Cheol.Kim@noaa.gov


2 

 

All experiments are divided into two large groups: SeaWiFS-CFSR (red fonts in Table 1) and 

VIIRS-RA2 combination (blue fonts in Table 2), respectively. The first four numerical experiments in 

Table 1 (KparCLM; ChlaCLM; ChlaIND; and ChlaID) belong to SeaWiFS-CFSR combination, where, 

the last seven experiments (KparSWFclmD; KparVRSclmD; KparVRSclmH; ChlaSWFclmD; 

ChlaVRSclmD; ChlaVRSclmH; and ChlaVRSclmDW) are from the second group. Simulation period for 

the first group is 2001-2009 and for the second group is 2012-2015, respectively. 

In summary, the comparison of the first group against GODAS product reveals that algorithmic 

differences (KparCLM versus ChlaCLM, ChlaIND, ChlaND) are noticeable, and that KparCLM yields 

better results with respect to root mean squared difference (RMSD) and correlation (Fig. 1a). 

Comparisons between the members in the second group and GODAS indicate that neither ocean color 

products nor algorithms used for shortwave radiation seem to have much impact (Fig. 1b) in improving 

simulated results or changing the thermal structure. However, it should be noted that temporal frequency 

of shortwave radiant fluxes (simulated hourly versus daily) makes noticeable differences in the top 100m 

averaged temperatures of  the NINO3.4 region (Fig. 1b).  

 

 

 

 

 

 

 

 
Fig. 1. Differences in SSH between Expt_03.0 and Expt_03.1 (a); Expt_03.1 and Expt03.2 (b); and Expt 

 

 

 

 

 

 

Fig. 1. Taylor diagrams for comparisons of all numerical experiments against GODAS. Comparisons between 

members of the first group (a) and the second group (b) with GODAS are presented, respectively.  
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The NCEP Global Wave Ensemble System (GWES) was implemented in 2005 [1] and initially validated by [2]. 
After upgrades reported in [3], it is now run with four cycles per day, using a spatial grid with 0.5o resolution, with 
forecast range to 10 days. A total of 20 perturbed members plus a control member compose the GWES, which consists of 
an implementation of the WAVEWATCH III model [4], forced by winds from NCEP’s Global Ensemble Forecast 
System (GEFS) [5]. A recent assessment and comparison of deterministic and ensemble products using altimeter data is 
provided in [3]. Their results show that although the general bias of the ensemble system does not show significant 
improvement over the deterministic global wave, after the fifth forecast day, root mean square errors from the GWES 
become smaller than the deterministic run. Furthermore, the GWES continuous ranked probability scores (CRPS) 
systematically outperforms the corresponding deterministic model’s mean absolute error (MAE) in all forecast times. 

In the current study, we propose an improvement of the quality of output products from the GWES using neural 
networks (NN), which are initially used to compute nonlinear averages.  Currently a conservative ensemble approach is 
used to calculate the ensemble mean (EM) in the GWES.  The ensemble mean for variable p is calculated as, 

𝐸𝐸𝐸𝐸 = 1
𝑛𝑛
∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1 (1) 

here n is the number of ensemble members and pi is the i-th ensemble member. 

An improvement upon (1) can be achieved using weighted EM (WEM), 

𝑊𝑊𝐸𝐸𝐸𝐸 = ∑ 𝑊𝑊𝑖𝑖∙𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖=1
∑ 𝑊𝑊𝑖𝑖
𝑛𝑛
𝑖𝑖=1

(2)              

where Wi are weights subscribed to ensemble members.  A priori information can be used to select the weights Wi. In 
addition, if observational data are available for the variable p, eq. (2) can be considered as a linear regression. Solving the 
linear regression equations (2), Wi and the linear regression EM (LREM) can be found.  Eq. (2) assumes a linear 
relationship between EM and the ensemble members; however, in reality, this relationship may be significantly nonlinear, 
and we can use a nonlinear statistical tool like NN to derive a relationship between ensemble members and nonlinear EM 
(NEM), 

𝑁𝑁𝐸𝐸𝐸𝐸 = 𝑁𝑁𝑁𝑁(𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝𝑛𝑛) (3) 
In a previous work [6], we demonstrated that a NN technique can be successfully used for averaging multi-

model ensemble for precipitation over the Continental US. We showed that NN provides significantly better results than 
conservative ensemble or LREM. In fact, NN results are comparable with those obtained by a human meteorologist-
analyst. In this pilot study, we apply NN to calculate NEM in GWES.  

To start with, we selected a “one buoy location” setup. We used 21 GWES ensemble members from a single grid 
point near the buoy location at 32.501N and 79.099W (buoy #41004 in the North Atlantic Ocean, water depth of 37 
meters); distant only 9.7 km to the nearest model grid point selected. As inputs to our NN we use three model variables 
related to 5-day forecasts for: significant wave height, Hs, peak period Tp, and wind speed at 10 m height, U10, a total of 
63 (3 x 21) inputs. Also, two metavariables: sin and cos of the day of the year were used.  Thus, our NN has 65 inputs in 
total. The NN has three outputs: Hs, Tp, and U10.  One year of data for buoy #41004 was used for training the NN outputs. 
For NN validation we used one year of data collected at buoy #41013, located at a distance of about 100 mi from buoy 
#41004. 

Table 1. Performance of three ensembles (1) to (3) for Hs on independent validation set (buoy #41013).  MAE is mean 
absolute error, SI – scatter index, CC – correlation coefficient, and Max the largest value of Hs in m. 

Bias RMSE MAE SI CC Max 
Conservative EM -0.03 0.445 0.301 0.334 0.759 6.28 

LREM 0.28 0.463 0.313 0.348 0.754 4.46 
NEM 0.12 0.424 0.29 0.328 0.782 4.3 



Figure 1 - Scatter plot shows three overlaid scatterplots: blue crosses show wave model ensemble, green diamonds – 
LREM, and red dots – NEM. 

Table 1 shows comparison of three aforementioned ensembles relative to an independent validation set (buoy #41013). 
NEM outperforms the model ensemble and LR ensemble for all statistics except the max value.  Fig. 1 illustrates the 
reason: there are very few data points with Hs.> 3 m.  These data are not sufficient for NN (and LR) training in the area of 
high Hs.    

As the next step, our investigation will move from one buoy configuration to two regional (Atlantic and Pacific) 
configurations and, eventually, to a global configuration when one or several NNs will provide NEM over the entire 
global ocean.  In addition, we are going to include the altimeter data in the training process. 
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Introduction
The ocean is full of mesoscale eddies continuously generated by barotropic and baroclinic
instabilities. How the eddying flows dissipate their energy is not well understood. Since
mesoscale  eddies  tend  to  transfer  their  energy  towards  larger  scales  (Charney,  1971),
processes other than quasi-geostrophic turbulence are necessary to dissipate the energy of
eddying flows in an equilibrium state.  Müller et al. (2005) referred to this as the ocean’s
route to dissipation. One way to dissipate the energy of eddying flows is to generate internal
gravity waves. These internally generated waves can transfer the energy towards smaller
scales via non-linear wave-wave interactions or wave breaking. Internally generated internal
waves  can  emerge  from  unbalanced  flows  (Molemaker  et  al.,  2010),  interactions  with
bottom topography (Nikurashin et  al.,  2013) or from spontaneous imbalance. This  work
investigates such an energy pathway using simulations with the 0.1° Max Planck Institute
Ocean  Model  (MPIOM).  Note  that  externally  generated  internal  waves,  such  as  wind-
induced near-inertial waves or internal tides, are not directly linked to eddying flows and
hence may not directly participate in the dissipation of the energy of these flows.
Two  simulations  have  been  performed  with  the  MPIOM,  using  a  tripolar  grid  with  a
horizontal resolution of 0.1°. The simulations start from an existing multi-decadal NCEP-
forced simulation (von Storch et al. 2012), in which the eddying flows are fully developed.
They cover  a  time period  of  three  months  in  2005:  June,  July and August.  In  the  first
simulation (exp_6h) the ocean is driven by the fluxes derived from 6 hourly NCEP data. In
the  second  simulation  (exp_const)  the  ocean  is  driven  by  constant  fluxes  obtained  by
averaging the same fluxes over the three months. In both simulations, the tides are switched
off. Thus, exp_const excludes all external forcing factors which otherwise would lead to
externally generated internal waves. The results shown in the following are all taken from
the August data.

Results
Figure 1 shows the  fraction of  energy in the  eddying flows relative to  the total  kinetic
energy on the left and the fraction of internal wave energy relative to the total kinetic energy
on the right for exp_6h at 100 m. In figure 2 the fraction of exp_const relative to exp_6h is
shown for the eddy energy on the left and the internal wave energy on the right, both also at
100  m.  Energy  of  eddying  flows/internal  wave  energy  is  defined  as  the  variance  of
meridional  and  zonal  velocity  fluctuations  on  time  scales  longer/shorter  than  the  local
inertial period. On the one hand both experiments have a comparable amount of energy in
the eddying flows. The ratio of eddy kinetic energy in exp_const to the one in exp_6h is
around one (Fig. 2, left) in regions with strong eddy kinetic energy (Fig. 1, left). Thus the
constant surface forcing does not kill the eddies. On the other hand the internal wave energy
in exp_6h is much higher than in exp_const. In exp-6h, internal wave energy is strong (Fig.
1,  right)  in  the  tropical  and subtropical  regions  outside  strong  currents  with  high  eddy
activities in the Gulf Stream, the Kuroshio and the Antarctic Circumpolar Current. This is
consistent with the idea that the wind-induced near-inertial waves, once being generated in
the storm track regions, propagate equatorward and enhance super-intertial variability there.
Under constant surface forcing, the wind-induced near-inertial waves are strongly reduced.



Nevertheless, notable internal wave energy is found in tropical regions and in regions where
high eddy activity  is  present  (Fig.  2,  right).  In  both  cases  the  internal  wave  energy  in
exp_const is comparable to the one in exp_6h. In regions of high eddy activity the internal
waves  are  likely spontaneously emitted by the  eddying flows and then captured by the
flows. The generation of the internal waves in the equatorial regions may be different from
the one in high-eddy-activity regions, because there the energy of eddies is much smaller
than the energy of the internal waves. Additionally the Rossby numbers in tropical regions
are  not  as  small  as  in  the  extratropical  regions,  thus  the  flow is  probably  not  as  well
balanced in  this  region.  Further  research is  needed to investigate  the  source of  internal
waves occurring there.

Figure 1: Fraction of energy relative to the total kinetic energy for exp_6h (left: eddy, right: internal wave)

Figure 2: Fraction of energies in exp_const relative to the energies in exp_6h (left: energy of eddying flows,
right: internal wave energy)
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